ANTISENSE OLIGONUCLEOTIDES TARGETING FOXG1

Abstract
Provided herein are compositions and methods for treating and/or ameliorating FOXG1 syndrome or the symptoms associated therewith. The compositions and methods disclosed herein utilize antisense oligonucleotides that target FOXG1 in order to modulate FOXG1 by, for example, increasing the amount of FOXG1 (e.g. mRNA encoding a FOXG1 protein or FOXG1 protein) in a cell, thereby restoring FOXG1 function.
Description
SEQUENCE LISTING

This application contains a Sequence Listing, which is incorporated by reference in its entirety. The accompanying Sequence Listing text file, named “2024-01-12 Revised_SL_ST26 062691-501C01US.xml” was created on Jan. 12, 2024 and is 2,123,592 bytes.


BACKGROUND

FOXG1 syndrome is a rare neurodevelopmental disorder associated with heterozygous variants in the forkhead box G1 (FOXG1) gene and is characterized by impaired neurological development and/or altered brain physiology. Observed phenotypes of FOXG1 syndrome primarily include a particular pattern of structural alterations in the brain resulting from de novo mutations in the FOXG1 gene. Such structural alterations include a thin or underdeveloped corpus callosum that connects between the right and left hemispheres of the brain, reduced sulci and gyri formation on the surface of the brain, and/or a reduced amount of white matter. FOXG1 syndrome affects most aspects of development in children and the main clinical features observed in association with FOXG1 variants comprise impairment of postnatal growth, primary (congenital) or secondary (postnatal) microcephaly, severe intellectual disability with absent speech development, epilepsy, stereotypies and dyskinesia, abnormal sleep patterns, unexplained episodes of crying, gastroesophageal reflux, and recurrent aspiration.


SUMMARY

Provided herein are compositions and methods for treating and/or ameliorating FOXG1 syndrome or the symptoms associated therewith. The compositions and methods disclosed herein utilize antisense oligonucleotides that target FOXG1 in order to modulate FOXG1 by, for example, increasing the amount of functional FOXG1 protein in a cell, thereby restoring or increasing FOXG1 function. The ability to restore or increase functional FOXG1 in cells provides for a foundation for the treatment of FOXG1 syndrome or alleviating symptoms associated therewith.


Accordingly, provided herein are antisense oligonucleotides, comprising a sequence complementary to a target nucleic acid sequence of a FOXG1 nucleic acid. In some embodiments, antisense oligonucleotide comprises a modification. In some embodiments, the modification comprises a modified inter-nucleoside linker, a modified nucleoside, or a combination thereof. In some embodiments, the antisense oligonucleotide comprises a modified inter-nucleoside linkage. In some embodiments, the modified inter-nucleoside linkage is a phosphorothioate inter-nucleoside linkage. In some embodiments, the antisense oligonucleotide comprises a phosphodiester inter-nucleoside linkage. In some embodiments, the antisense oligonucleotide comprises a modified nucleoside. In some embodiments, the modified nucleoside comprises a modified sugar. In some embodiments, the modified sugar is a bicyclic sugar. In some embodiments, the modified sugar comprises a 2′-O-methoxyethyl group. In some embodiments, the FOXG1 nucleic acid comprises a 5′ untranslated region (5′ UTR) and a 3′ untranslated region (3′ UTR), wherein, the target sequence is located at the 5′ UTR or the 3′ UTR of the FOXG1 nucleic acid.


In some embodiments, the target sequence is located at the 5′ UTR region of the FOXG1 nucleic acid. In some embodiments, the antisense oligonucleotide comprises a nucleobase sequence selected from the group consisting of SEQ ID NOs.: 1-84. In some embodiments, the target sequence is located at the 3′ UTR region of the FOXG1 nucleic acid. In some embodiments, the antisense oligonucleotide comprises a nucleobase sequence selected from the group consisting of SEQ ID NOs.: 85-384. In certain embodiments, the antisense oligonucleotide targeting the 3′ UTR comprises a nucleobase sequence complementary to a sequence within NM_005249.5_2000-2200_as region or NM_005249.5_2900-3000_as of the FOXG1 nucleic acid. In certain embodiments, the antisense oligonucleotide targeting the 3′ UTR comprises a nucleobase sequence selected from the group consisting SEQ ID NOs: 101, 103, 284, 2886, 287, 288, or 289. In some embodiments, the antisense oligonucleotides are included in an ASO composition comprising more than one ASO. In certain the embodiments, the ASO composition comprises 2, 3, 4, 5 or more ASOs. Such ASO compositions are suitable for use in the methods described herein.


In some embodiments, the antisense oligonucleotide is a single-stranded modified oligonucleotide. In some embodiments, the FOXG1 nucleic acid molecule is a ribonucleic acid (RNA). In some embodiments, the RNA molecule is a messenger RNA (mRNA) molecule. In some embodiments, the antisense oligonucleotide inhibits regulatory elements (e.g. miRNA suppression, suppression by nucleic acid-binding proteins, etc.) that reduce translation of the FOXG1 RNA. In some embodiments, the antisense oligonucleotide inhibits regulatory elements that reduce stability of the FOXG1 RNA. In some embodiments, the antisense oligonucleotide inhibits regulatory elements located within the 5′ UTR of the FOXG1 RNA. In some embodiments, the antisense oligonucleotide inhibits regulatory elements located within the 3′ UTR of the FOXG1 RNA. In some embodiments, the antisense oligonucleotide inhibits translation of an upstream open reading frame (uORF). In some embodiments, the antisense oligonucleotide sterically inhibits (1) miRNA binding and suppression of FOXG1 translation and/or (2) an RNA binding protein from binding to a regulatory sequence of the FOXG1 RNA and destabilizing the FOXG1 RNA. In some embodiments, the antisense oligonucleotide inhibits nuclease digestion of a 5′ region or 3′ region of the FOXG1 RNA. A pharmaceutical composition comprising the antisense oligonucleotide of an antisense oligonucleotide and a pharmaceutically acceptable carrier or diluent.


Also provided are methods of modulating expression of FOXG1 in a cell, comprising contacting the cell with a composition comprising an antisense oligonucleotide complementary to a target nucleic acid sequence of a FOXG1 nucleic acid.


In some embodiments, the cell is a located in a brain of an individual. In some embodiments, the individual is a human. In some embodiments, the individual comprises a mutated FOXG1 gene. In some embodiments, the individual has a FOXG1 disease or disorder. In some embodiments, the FOXG1 disease or disorder is FOXG1 syndrome. In some embodiments, the FOXG1 nucleic acid is a ribonucleic acid (RNA). In some embodiments, the RNA is a messenger RNA (mRNA).


In some embodiments, the antisense oligonucleotide inhibits regulatory elements that reduce translation or stability of the FOXG1 RNA, thereby increasing an amount of FOXG1 protein in a cell.


In some embodiments, the antisense oligonucleotide is a single-stranded modified oligonucleotide. In some embodiments, the antisense oligonucleotide comprises at least one modified inter-nucleoside linkage. In some embodiments, the modified inter-nucleoside linkage is a phosphorothioate inter-nucleoside linkage. In some embodiments, the antisense oligonucleotide comprises at least one phosphodiester inter-nucleoside linkage. In some embodiments, the antisense oligonucleotide comprises a modified nucleoside. In some embodiments, the modified nucleoside comprises a modified sugar. In some embodiments, the modified sugar is a bicyclic sugar. In some embodiments, the modified sugar comprises a 2′-O-methoxyethyl (MOE) group. In some embodiments, the antisense oligonucleotide comprises at least one phosphodiester inter-nucleoside linkage. In some embodiments, the target sequence is located at a 5′ UTR region or 3′ UTR region of the FOXG1 nucleic acid.


In some embodiments, the target sequence is located at the 5′ UTR region of the FOXG1 nucleic acid. In some embodiments, the antisense oligonucleotide comprises a nucleobase sequence selected from the group consisting of SEQ ID NOs.: 1-84. In some embodiments, the target sequence is located at the 3′ UTR region of the FOXG1 nucleic acid. In some embodiments, the antisense oligonucleotide comprises a nucleobase sequence selected from the group consisting of SEQ ID NOs.: 85-384. In some embodiments, modulating expression comprises increasing expression of a FOXG1 protein in the cell. In some embodiments, modulating expression comprises increasing stability or half-life of the FOXG1 nucleic acid in the cell. In some embodiments, modulating expression comprises increasing translation of a FOXG1 protein in the cell. In some embodiments, the antisense oligonucleotide is administered to the individual by intrathecal injection, intracerebroventricular injection, inhalation, parenteral injection or infusion, or orally.


Further provided are methods of treating or ameliorating a FOXG1 disease or disorder in an individual having, or at risk of having, the FOXG1 disease or disorder, comprising administering to the individual an antisense oligonucleotide, wherein the antisense oligonucleotide comprises a sequence complementary to a target sequence of the FOXG1 nucleic acid, thereby treating or ameliorating a FOXG1 disease in the individual. In some embodiments, the individual is a human. In some embodiments, the human is an unborn human. In some embodiments, the individual comprises a mutated FOXG1 gene. In some embodiments, the FOXG1 disease or disorder is FOXG1 syndrome. In some embodiments, the FOXG1 nucleic acid is a ribonucleic acid (RNA). In some embodiments, the RNA molecule is a messenger RNA (mRNA). In some embodiments, the target sequence is located at a 5′ UTR region or 3′ UTR region of the FOXG1 nucleic acid. In some embodiments, the target sequence is located at the 5′ UTR region of the FOXG1 nucleic acid. In some embodiments, the antisense oligonucleotide comprises a nucleobase sequence selected from the group consisting of SEQ ID NOs.: 1-84. In some embodiments, the target sequence is located at the 3′ UTR region of the FOXG1 nucleic acid. In some embodiments, the antisense oligonucleotide comprises a nucleobase sequence selected from the group consisting of SEQ ID NOs.: 85-384. In some embodiments, the antisense oligonucleotide modulates expression of the FOXG1 nucleic acid in the individual. In some embodiments, modulating expression comprises increasing stability or half-life of the FOXG1 nucleic acid in the individual. In some embodiments, modulating expression comprises increasing translation of a FOXG1 protein in the individual. In some embodiments, modulating expression comprises increasing translation of a FOXG1 protein in the individual. In some embodiments, modulating expression comprises increasing an amount of FOXG1 a cell of the individual. In some embodiments, the cell is located in the brain of the individual.


Also provided are antisense oligonucleotides comprising an antisense oligonucleotide sequence that hybridizes to a target nucleic acid sequence located within positions 2000-2100 or 2900-3000 of a FOXG1 nucleic acid (e.g., FOXG1 mRNA). In some embodiments, the antisense oligonucleotide comprises a modification. In some embodiments, the modification comprises a modified inter-nucleoside linker, a modified nucleoside, or a combination thereof. In some embodiments, the antisense oligonucleotide comprises a modified inter-nucleoside linkage. In some embodiments, the antisense oligonucleotide sequence comprises SEQ ID NO: 100, SEQ ID NO:103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289. In some embodiments, the antisense oligonucleotide hybridizes to one or more nucleotides within or adjacent to a position on the FOXG1 nucleic acid targeted by SEQ ID NO: 100, SEQ ID NO:103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289. In some embodiments, the antisense oligonucleotide hybridizes to one or more nucleotides within a position on the FOXG1 nucleic acid targeted by SEQ ID NO: 100, SEQ ID NO:103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289. In some embodiments, the antisense oligonucleotide sequence comprises 80% sequence identity or greater to SEQ ID NO: 100, SEQ ID NO: 103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289 In some embodiments, the antisense oligonucleotide sequence comprises 90% sequence identity or greater to SEQ ID NO: 100, SEQ ID NO: 103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289. In some embodiments, the antisense oligonucleotide sequence comprises 10 or more contiguous nucleotides selected from a sequence within SEQ ID NO: 100, SEQ ID NO: 103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the disclosure are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the disclosure are utilized, and the accompanying drawings of which:



FIG. 1 shows a diagram of a FOXG1 transcript.



FIG. 2 shows FOXG1 mRNA expression of cells treated with ASOs targeting FOXG1 relative to mock transfection control



FIG. 3 shows FOXG1 mRNA expression modulation of 2′-O-methoxyethyl (MOE) chemistry antisense oligos in cells.



FIGS. 4A and 4B show FOXG1 mRNA expression modulation of selected 2′-O-methoxyethyl (MOE) chemistry antisense oligos in cells.





DETAILED DESCRIPTION

Deletions or mutations in a single allele of the forkhead box G1 (FOXG1) gene cause FOXG1 syndrome. FOXG1 syndrome is a rare disease characterized by developmental delay, severe intellectual disability, epilepsy, absent language, and dyskinesis. Hallmarks of altered brain physiologies associated with FOXG1 syndrome include cortical atrophy and agenesis of the corpus callosum. The FOXG1 gene/protein is a member of the forkhead transcription factor family and is expressed specifically in neural progenitor cells of the forebrain. The FOXG1 gene is composed of one coding exon and notably, the location or type of FOXG1 mutation can be associated with or indicative of clinical severity.


The FOXG1 protein plays an important role in brain development, particularly in a region of the embryonic brain known as the telencephalon. The telencephalon ultimately develops into several critical structures, including the largest part of the brain (i.e. cerebrum), which controls most voluntary activity, language, sensory perception, learning, and memory. A shortage of functional FOXG1 protein, as observed in individuals having mutations or deletions in a single FOXG1 allele (i.e. heterozygous individuals), disrupts normal brain patterning and development.


Accordingly, disclosed herein are compositions and methods useful for increasing an amount of functional FOXG1 (e.g. FOXG1 protein or FOXG1 messenger ribonucleic acid (mRNA)) in a cell having a shortage of functional FOXG1. Such compositions and methods are useful in their application for treating individual having a FOXG1-related disease or disorder wherein the lack or shortage of functional FOXG1 protein can be remedied. In order to achieve an increase of FOXG1 expression in cells or in an individual, antisense oligonucleotides targeting FOXG1 are used.


Antisense Oligonucleotides

Antisense oligonucleotides (ASOs) are small (˜18-30 nucleotides), synthetic, single-stranded nucleic acid polymers that can be employed to modulate gene expression by various mechanisms. Antisense oligonucleotides (ASOs) can be subdivided into two major categories: RNase H competent and steric block. For RNase H competent antisense oligonucleotides, the endogenous RNase H enzyme recognizes RNA-DNA heteroduplex substrates that are formed when antisense oligonucleotides bind to their cognate mRNA transcripts to catalyze the degradation of RNA. Steric block oligonucleotides are antisense oligonucleotides (ASOs) that are designed to bind to target transcripts with high affinity but do not induce target transcript degradation.


Steric block antisense oligonucleotides (ASOs) can be designed to inhibit translation inhibition, interfere with upstream open reading frames that negatively regulate translation in order to activate protein expression, inhibit RNA degradation, inhibit miRNA suppression, and influence polyadenylation signals to increase transcript stability. Accordingly, provided herein are steric block antisense oligonucleotides (ASOs) useful for modulating the expression and/or amount of functional FOXG1 (i.e. functional FOXG1) in a cell (e.g. mRNA encoding a functional FOXG1 protein or a FOXG1 protein). Specifically, the antisense oligonucleotides (ASOs) are useful for increasing the expression and/or amount of FOXG1 (i.e. functional FOXG1) in a cell (e.g. mRNA encoding a functional FOXG1 protein or a functional FOXG1 protein). The antisense oligonucleotides (ASOs) disclosed herein achieve this effect by targeting a FOXG1 nucleic acid encoding a functional FOXG1 protein and inhibiting translation inhibition, interfering with upstream open reading frames (uORFs), inhibiting RNA degradation, inhibiting miRNA suppression of expression, and/or increasing RNA stability to ultimately increase the number of RNA transcripts encoding FOXG1 and/or protein expression of a FOXG1 (i.e. functional FOXG1) protein.


In order to achieve effective targeting of a FOXG1 RNA (e.g. messenger RNA), the antisense oligonucleotides disclosed herein (ASOs) comprise a sequence complementary to a sequence of the FOXG1 RNA, wherein the complementary sequence binds and/or hybridizes to a sequence of the FOXG1 RNA. Accordingly, disclosed herein are antisense oligonucleotides (ASOs) comprising a sequence complementary to a target nucleic acid sequence of a FOXG1 nucleic acid (e.g. a FOXG1 mRNA). Generally, mRNA transcripts comprise a 5′ untranslated region (5′ UTR) and a 3′ untranslated region (3′ UTR). The antisense oligonucleotides (ASOs) disclosed herein target the 5′ UTR or the 3′ UTR of a FOXG1 mRNA transcript. In order to achieve targeting of the 5′ UTR or 3′ UTR, the antisense oligonucleotide (ASOs) comprise a sequence complementary to a target sequence is located at the 5′ UTR or the 3′ UTR of the FOXG1 mRNA. In some embodiments, the target sequence is located at or within the 5′ UTR. In certain embodiments, the antisense oligonucleotide targeting the 5′ UTR comprises a nucleobase sequence selected from the group consisting of SEQ ID NO.: 1-84. In some embodiments, the target sequence is located at or within the 3′ UTR. In certain embodiments, the antisense oligonucleotide targeting the 3′ UTR comprises a nucleobase sequence selected from the group consisting of SEQ ID NO.: 85-384. In certain embodiments, the antisense oligonucleotide targeting the 3′ UTR comprises a nucleobase sequence complementary to a sequence within NM_005249.5_2000-2200_as region or NM_005249.5_2900-3000_as of the FOXG1 nucleic acid. In certain embodiments, the antisense oligonucleotide targeting the 3′ UTR comprises a nucleobase sequence selected from the group consisting SEQ ID NOs: 101, 103, 284, 2886, 287, 288, or 289. In some embodiments, the antisense oligonucleotides are included in an ASO composition comprising more than one ASO. In certain the embodiments, the ASO composition comprises 2, 3, 4, 5 or more ASOs. Such ASO compositions are suitable for use in the methods described herein. FIG. 1 shows a diagram of the FOXG1 mRNA transcript comprising 5′ and 3′ UTRs. TABLE 1 discloses sequences and antisense oligonucleotides (ASOs) having sequences complementary to the 5′ UTR of a FOXG1 mRNA. TABLE 2 discloses sequences and antisense oligonucleotides (ASOs) having sequences complementary to the 3′ UTR of a FOXG1 mRNA. In some embodiments, the antisense oligonucleotides (ASOs) disclosed herein, targeting the 5′ UTR or 3′ UTR, increase an amount of FOXG1 protein and/or mRNA transcripts in a cell and/or individual. In certain embodiments, targeting a FOXG1 nucleic acid encoding a functional FOXG1 protein inhibits translation inhibition, interferes with upstream open reading frames (uORFs), inhibits RNA degradation, and/or increases RNA stability to ultimately increase protein expression of a functional FOXG1 protein.


In order to improve the pharmacodynamic, pharmacokinetic, and biodistribution properties of antisense oligonucleotides (ASOs), the antisense oligonucleotides can be designed and engineered to comprise one or more chemical modifications (e.g. a modified inter-nucleoside linker, a modified nucleoside, or a combination thereof). Accordingly, in some embodiments, the antisense oligonucleotide is a modified oligonucleotide. In some embodiments, the antisense oligonucleotide comprises one or more modifications. In certain embodiments, the modification comprises a modified inter-nucleoside linker, a modified nucleoside, or a combination thereof


Modified Inter-Nucleoside Linkers

Modification of the inter-nucleoside linker (i.e. backbone) can be utilized to increase pharmacodynamic, pharmacokinetic, and biodistribution properties. For example, inter-nucleoside linker modifications prevent or reduce degradation by cellular nucleases, thus increasing the pharmacokinetics and bioavailability of the antisense oligonucleotide. Generally, a modified inter-nucleoside linker includes any linker other than other than phosphodiester (PO) liners, that covalently couples two nucleosides together. In some embodiments, the modified inter-nucleoside linker increases the nuclease resistance of the antisense oligonucleotide compared to a phosphodiester linker. For naturally occurring antisense oligonucleotides, the inter-nucleoside linker includes phosphate groups creating a phosphodiester bond between adjacent nucleosides. Modified inter-nucleoside linkers are particularly useful in stabilizing antisense oligonucleotides for in vivo use and may serve to protect against nuclease cleavage.


In some embodiments, the antisense oligonucleotide comprises one or more inter-nucleoside linkers modified from the natural phosphodiester to a linker that is for example more resistant to nuclease attack. In some embodiments all of the inter-nucleoside linkers of the antisense oligonucleotide, or contiguous nucleotide sequence thereof, are modified. In some embodiments all of the inter-nucleoside linkers of the antisense oligonucleotide, or contiguous nucleotide sequence thereof, are nuclease resistant inter-nucleoside linkers. In some embodiments the inter-nucleoside linkage comprises sulphur (S), such as a phosphorothioate inter-nucleoside linkage.


Phosphorothioate inter-nucleoside linkers are particularly useful due to nuclease resistance and improved pharmacokinetics. In some embodiments, one or more of the inter-nucleoside linkers of the antisense oligonucleotide, or contiguous nucleotide sequence thereof, comprise a phosphorothioate inter-nucleoside linker. In some embodiments, all of the inter-nucleoside linkers of the antisense oligonucleotide, or contiguous nucleotide sequence thereof, comprise a phosphorothioate inter-nucleoside linker.


Modified Nucleosides

Modifications to the ribose sugar or nucleobase can also be utilized to increase pharmacodynamic, pharmacokinetic, and biodistribution properties. Similar to modifications of the inter-nucleoside linker, nucleoside modifications prevent or reduce degradation by cellular nucleases, thus increasing the pharmacokinetics and bioavailability of the antisense oligonucleotide. Generally, a modified nucleoside includes the introduction of one or more modifications of the sugar moiety or the nucleobase moiety.


The antisense oligonucleotides, as described, can comprise one or more nucleosides comprising a modified sugar moiety, wherein the modified sugar moiety is a modification of the sugar moiety when compared to the ribose sugar moiety found in deoxyribose nucleic acid (DNA) and RNA. Numerous nucleosides with modification of the ribose sugar moiety can be utilized, primarily with the aim of improving certain properties of oligonucleotides, such as affinity and/or nuclease resistance. Such modifications include those where the ribose ring structure is modified. These modifications include replacement with a hexose ring (HNA), a bicyclic ring having a biradicle bridge between the C2 and C4 carbons on the ribose ring (e.g. locked nucleic acids (LNA)), or an unlinked ribose ring which typically lacks a bond between the C2 and C3 carbons (e.g. UNA). Other sugar modified nucleosides include, for example, bicyclohexose nucleic acids or tricyclic nucleic acids. Modified nucleosides also include nucleosides where the sugar moiety is replaced with a non-sugar moiety, for example in the case of peptide nucleic acids (PNA), or morpholino nucleic acids.


Sugar modifications also include modifications made by altering the substituent groups on the ribose ring to groups other than hydrogen, or the 2′-OH group naturally found in DNA and RNA nucleosides. Substituents may, for example be introduced at the 2′, 3′, 4′ or 5′ positions. Nucleosides with modified sugar moieties also include 2′ modified nucleosides, such as 2′ substituted nucleosides. Indeed, much focus has been spent on developing 2′ substituted nucleosides, and numerous 2′ substituted nucleosides have been found to have beneficial properties when incorporated into oligonucleotides, such as enhanced nucleoside resistance and enhanced affinity. A 2′ sugar modified nucleoside is a nucleoside that has a substituent other than H or —OH at the 2′ position (2′ substituted nucleoside) or comprises a 2′ linked biradicle, and includes 2′ substituted nucleosides and LNA (2′-4′ biradicle bridged) nucleosides. Examples of 2′ substituted modified nucleosides are 2′-O-alkyl-RNA, 2′-O-methyl-RNA, 2′-alkoxy-RNA, 2′-O-methoxyethyl-oligos (MOE), 2′-amino-DNA, 2′-Fluoro-RNA, and 2′-F-ANA nucleoside. In some embodiments, the antisense oligonucleotide comprises one or more modified sugars. In some embodiments, the antisense oligonucleotide comprises only modified sugars. In certain embodiments, the antisense oligo comprises greater than 10%, 25%, 50%, 75%, or 90% modified sugars. In some embodiments, the modified sugar is a bicyclic sugar. In some embodiments, the modified sugar comprises a 2′-O-methoxyethyl (MOE) group.


In some embodiments, the antisense oligonucleotide comprises both inter-nucleoside linker modifications and nucleoside modifications.


Pharmaceutical Compositions

Further provided herein are pharmaceutical compositions comprising any of the disclosed antisense oligonucleotides and a pharmaceutically acceptable diluent, carrier, salt and/or adjuvant. A pharmaceutically acceptable diluent includes phosphate-buffered saline (PBS) and pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts. In some embodiments the pharmaceutically acceptable diluent is sterile phosphate buffered saline. In some embodiments the oligonucleotide is used in the pharmaceutically acceptable diluent at a concentration of 50-300 μM solution. In some embodiments, the oligonucleotide, as described, is administered at a dose of 10-1000 μg.


The antisense oligonucleotides or oligonucleotide conjugates of the disclosure may be mixed with pharmaceutically acceptable active or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions are dependent upon a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.


Methods of Use

The antisense oligonucleotides (ASOs) provided herein are useful for targeting a FOXG1 nucleic acid encoding a functional FOXG1 protein, wherein an antisense oligonucleotide inhibits translation inhibition, interferes with upstream open reading frames (uORFs), inhibits RNA degradation, and/or increases RNA stability to ultimately increase protein expression of a functional FOXG1 protein. According, the antisense oligonucleotides targeting are further useful in methods for increasing the expression and/or amount of functional FOXG1 in a cell (e.g. an amount of functional FOXG1 mRNA or protein). Accordingly, provided herein are methods of modulating expression of a FOXG1 in a cell, comprising contacting the cell with a composition comprising an antisense oligonucleotide complementary to a target nucleic acid sequence of a FOXG1 nucleic acid.


Further provided, are methods of treating or ameliorating a FOXG1 disease or disorder in an individual having, or at risk of having, the FOXG1 disease or disorder, comprising administering to the individual an antisense oligonucleotide, wherein the antisense oligonucleotide comprises a sequence complementary to a target sequence of the FOXG1 nucleic acid, thereby treating or ameliorating a FOXG1 disease in the individual.


Generally, cells of interest include neuronal cells and/or cells associated with the brain or brain development. In some embodiments, the cell is located in a brain of an individual. In some embodiments, the cell is a neural cell. In some embodiments, the individual is a human. In certain embodiments, the human is an unborn human.


The antisense oligonucleotides (ASOs) and methods are particularly useful for increasing the expression and/or amount of functional FOXG1 (e.g. an amount of functional FOXG1 mRNA or protein) in a cell and/or individual comprising a mutated or deleted FOXG1 allele. In some embodiments, the cell and/or individual comprises a mutated FOXG1 gene. In some embodiments the individual has been diagnosed with or at risk of a FOCG1 disease or disorder. In some embodiments the FOXG1 disease o disorder is FOXG1 syndrome.


In some embodiments, modulating expression comprises increasing expression of a FOXG1 protein in the cell. In some embodiments, modulating expression comprises increasing stability or half-life of the FOXG1 nucleic acid in the cell. In some embodiments, modulating expression comprises increasing translation of a FOXG1 protein in the cell.


In order to achieve effective targeting of a FOXG1 RNA (e.g. messenger RNA), the antisense oligonucleotides disclosed herein (ASOs) comprise a sequence complementary to a sequence of the FOXG1 RNA, wherein the complementary sequence binds and/or hybridizes to a sequence of the FOXG1 RNA. For example, mRNA transcripts comprise a 5′ untranslated region (5′ UTR) and a 3′ untranslated region (3′ UTR). The antisense oligonucleotides (ASOs) disclosed herein target the 5′ UTR or the 3′ UTR of a FOXG1 mRNA transcript. In order to achieve targeting of the 5′ UTR or 3′ UTR, the antisense oligonucleotide (ASOs) comprise a sequence complementary to a target sequence is located at the 5′ UTR or the 3′ UTR of the FOXG1 mRNA. In some embodiments, the target sequence is located at or within the 5′ UTR. In certain embodiments, the antisense oligonucleotide targeting the 5′ UTR comprises a nucleobase sequence selected from the group consisting of SEQ ID NO.: 1-84. In some embodiments, the target sequence is located at or within the 3′ UTR. In certain embodiments, the antisense oligonucleotide targeting the 3′ UTR comprises a nucleobase sequence selected from the group consisting of SEQ ID NO.: 85-384. In certain embodiments, the antisense oligonucleotide targeting the 3′ UTR comprises a nucleobase sequence complementary to a sequence within NM_005249.5_2000-2200_as region or NM_005249.5_2900-3000_as of the FOXG1 nucleic acid. In certain embodiments, the antisense oligonucleotide targeting the 3′ UTR comprises a nucleobase sequence complementary to a sequence within NM_005249.5_2000-2100_as region of the FOXG1 nucleic acid. In certain embodiments, the antisense oligonucleotide targeting the 3′ UTR comprises a nucleobase sequence selected from the group consisting SEQ ID NOs: 100, 103, 284, 2886, 287, 288, or 289. In some embodiments, the antisense oligonucleotides are included in an ASO composition comprising more than one ASO. In certain the embodiments, the ASO composition comprises 2, 3, 4, 5 or more ASOs.


Formulations of therapeutic and diagnostic agents can be prepared by mixing with physiologically acceptable carriers, excipients, or stabilizers in the form of, e.g., lyophilized powders, slurries, aqueous solutions, lotions, or suspensions (see, e.g., Hardman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, N.Y., 2001; Gennaro, Remington: The Science and Practice of Pharmacy, Lippincott, Williams, and Wilkins, New York, N.Y., 2000; Avis, et al. (eds.), Pharmaceutical Dosage Forms: Parenteral Medications, Marcel Dekker, N Y, 1993; Lieberman, et al. (eds.), Pharmaceutical Dosage Forms: Tablets, Marcel Dekker, N Y, 1990; Lieberman, et al. (eds.) Pharmaceutical Dosage Forms: Disperse Systems, Inc., New York, N.Y., 2000).


Compositions comprising antisense oligonucleotides (ASOs), as disclosed herein, can be provided by doses at intervals of, e.g., one day, one week, or 1-7 times per week. A specific dose protocol is one involving the maximal dose or dose frequency that avoids significant undesirable side effects.


The disclosed antisense oligonucleotides or pharmaceutical compositions thereof can be administered topically (such as, to the skin, inhalation, ophthalmic or otic) or enterally (such as, orally or through the gastrointestinal tract) or parenterally (such as, intravenous, subcutaneous, intra-muscular, intracerebral, intracerebroventricular or intrathecal). In some embodiments the antisense oligonucleotide or pharmaceutical compositions thereof are administered by a parenteral route including intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion, intrathecal or intracranial, e.g. intracerebral or intraventricular, administration. In some embodiments the active oligonucleotide or oligonucleotide conjugate is administered intravenously.


Definitions

Unless defined otherwise, all terms of art, notations and other technical and scientific terms or terminology used herein are intended to have the same meaning as is commonly understood by one of ordinary skill in the art to which the claimed subject matter pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art.


The term “FOXG1,” as used herein, generally refers to the gene and gene products that encode a member of the fork-head transcription factor family. The encoded protein, which functions as a transcriptional repressor, is highly expressed in neural tissues during brain development. Mutations at this locus have been associated with Rett syndrome and a diverse spectrum of neurodevelopmental disorders defined as part of FOXG1 syndrome. Depending on the context of its use, “FOXG1” can refer to the FOXG1 gene, a FOXG1 deoxyribonucleic acid molecule (DNA), a FOXG1 ribonucleic acid molecule (RNA), or a FOXG1 protein. The mRNA sequence of FOXG1 is described in “NM_005249.5→NP_005240.3 forkhead box protein G1” or “accession number NM_005249.5” or the mRNA encoded by “NCBI GENE ID: 2290”. A functional FOXG1 protein describes the wild-type or unmutated FOXG1 gene, mRNA, and/or protein. Generally, “FOXG1” refers to a functional ‘FOXG1” gene or gene product, having normal function/activity within a cell. Deletions or mutations or variants of FOXG1 are indicative of non-functional FOXG1 variants having reduced, inhibited, or ablated FOXG1 function. As disclosed herein, the compositions and methods disclosed herein are primarily concerned with modulating or increasing or restoring an amount of FOXG1 (i.e. functional FOXG1) in a cell and/or individual.


The term “oligonucleotide,” as used herein, generally refers to a molecule comprising two or more covalently linked nucleosides. Such covalently bound nucleosides may also be referred to as nucleic acid molecules or oligomers. Oligonucleotides are commonly made in the laboratory by solid-phase chemical synthesis followed by purification. When referring to a sequence of the oligonucleotide, reference is made to the sequence or order of nucleobase moieties, or modifications thereof, of the covalently linked nucleotides or nucleosides. The oligonucleotide of the disclosure is man-made, and is chemically synthesized, and is typically purified or isolated. The oligonucleotide disclosed may comprise one or more modified nucleosides or nucleotides.


The term “antisense oligonucleotide,” as used herein, refers to oligonucleotides capable of modulating expression of a target gene by hybridizing to a target nucleic acid, in particular to a contiguous sequence on a target nucleic acid. Preferably, the antisense oligonucleotides of the present disclosure are single stranded. In some embodiments, the antisense oligonucleotide is single stranded.


The term “modified oligonucleotide” refers to an oligonucleotide comprising one or more sugar-modified nucleosides, modified nucleobases, and/or modified inter-nucleoside linkers.


The term “modified nucleoside” or “nucleoside modification,” as used herein, refers to nucleosides modified as compared to the equivalent DNA or RNA nucleoside by the introduction of one or more modifications of the sugar moiety or the (nucleo)base moiety. In some embodiments, the modified nucleoside comprise a modified sugar moiety. The term modified nucleoside may also be used herein interchangeably with the term “nucleoside analogue” or modified “units” or modified “monomers”.


The term “modified inter-nucleoside linkage” is refers to linkers other than phosphodiester (PO) linkers, that covalently couples two nucleosides together. Nucleotides with modified inter-nucleoside linkage are also termed “modified nucleotides”. In some embodiments, the modified inter-nucleoside linkage increases the nuclease resistance of the oligonucleotide compared to a phosphodiester linkage. For naturally occurring oligonucleotides, the inter-nucleoside linkage includes phosphate groups creating a phosphodiester bond between adjacent nucleosides. Modified inter-nucleoside linkers are particularly useful in stabilizing oligonucleotides for in vivo use and may serve to protect against nuclease cleavage at regions of DNA or RNA nucleosides.


The term “nucleobase” includes the purine (e.g. adenine and guanine) and pyrimidine (e.g. uracil, thymine and cytosine) moiety present in nucleosides and nucleotides which form hydrogen bonds in nucleic acid hybridization. The term nucleobase also encompasses modified nucleobases which may differ from naturally occurring nucleobases but are functional during nucleic acid hybridization. In this context “nucleobase” refers to both naturally occurring nucleobases such as adenine, guanine, cytosine, thymidine, uracil, xanthine and hypoxanthine, as well as non-naturally occurring variants.


A nucleobase moiety can be modified by changing the purine or pyrimidine into a modified purine or pyrimidine, such as substituted purine or substituted pyrimidine, such as a nucleobased selected from isocytosine, pseudoisocytosine, 5-methyl cytosine, 5-thiozolo-cytosine, 5-propynyl-cytosine, 5-propynyl-uracil, 5-bromouracil 5-thiazolo-uracil, 2-thio-uracil, 2′thio-thymine, inosine, diaminopurine, 6-aminopurine, 2-aminopurine, 2,6-diaminopurine and 2-chloro-6-aminopurine.


The nucleobase moieties may be indicated by the letter code for each corresponding nucleobase, e.g. A, T, G, C or U, wherein each letter may optionally include modified nucleobases of equivalent function. For example, in the exemplified oligonucleotides, the nucleobase moieties are selected from A, T, G, C, and 5-methyl cytosine. In some embodiments, the cytosine nucleobases in a 5′cg3′ motif is 5-methyl cytosine.


The term “hybridizing” or “hybridizes” or “targets” or “binds” describes two nucleic acid strands (e.g. an oligonucleotide and a target nucleic acid) forming hydrogen bonds between base pairs on opposite strands thereby forming a duplex. The affinity of the binding between two nucleic acid strands is the strength of the hybridization. It is often described in terms of the melting temperature (Tm) defined as the temperature at which half of the oligonucleotides are duplexed with the target nucleic acid.


The oligonucleotide comprises a contiguous nucleotide region which is complementary to or hybridizes to a sub-sequence or region of the target nucleic acid molecule. The term “target sequence” as used herein refers to a sequence of nucleotides present in the target nucleic acid which comprises the nucleobase sequence which is complementary to the contiguous nucleotide region or sequence of the oligonucleotide of the disclosure. In some embodiments, the target sequence consists of a region on the target nucleic acid which is complementary to the contiguous nucleotide region or sequence of the oligonucleotide of the present disclosure. In some embodiments the target sequence is longer than the complementary sequence of a single oligonucleotide, and may, for example represent a preferred region of the target nucleic acid which may be targeted by several oligonucleotides of the present disclosure.


The oligonucleotide of the present disclosure comprises a contiguous nucleotide region which is complementary to a FOXG1 target nucleic acid, such as a target sequence of FOXG1.


The oligonucleotide comprises a contiguous nucleotide region of at least 10 nucleotides which is complementary to or hybridizes to a target sequence present in the target nucleic acid molecule. The contiguous nucleotide region (and therefore the target sequence) comprises of at least 10 contiguous nucleotides, such as 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30 contiguous nucleotides, such as from 15-30, such as from 18-23 contiguous nucleotides.


As used herein, the terms “treatment” or “treating” are used in reference to a pharmaceutical or other intervention regimen for obtaining beneficial or desired results in the recipient. Beneficial or desired results include but are not limited to a therapeutic benefit and/or a prophylactic benefit. A therapeutic benefit may refer to eradication or amelioration of symptoms or of an underlying disorder being treated. Also, a therapeutic benefit can be achieved with the eradication or amelioration of one or more of the physiological symptoms associated with the underlying disorder such that an improvement is observed in the subject, notwithstanding that the subject may still be afflicted with the underlying disorder. A prophylactic effect includes delaying, preventing, or eliminating the appearance of a disease or condition, delaying or eliminating the onset of symptoms of a disease or condition, slowing, halting, or reversing the progression of a disease or condition, or any combination thereof. For prophylactic benefit, a subject at risk of developing a particular disease, or to a subject reporting one or more of the physiological symptoms of a disease may undergo treatment, even though a diagnosis of this disease may not have been made.


The term “a therapeutically effective amount” of a compound of the present application refers to an amount of the compound of the present application that will elicit the biological or medical response of a subject, for example, reduction or inhibition of tumor cell proliferation, or ameliorate symptoms, alleviate conditions, slow or delay disease progression, or prevent a disease, etc. In one non-limiting embodiment, the term “a therapeutically effective amount” refers to the amount of a compound of the present application that, when administered to a subject, is effective to at least partially alleviate, inhibit, prevent and/or ameliorate a condition, or a disorder or a disease, or at least partially inhibit activity of a targeted enzyme or receptor.


As used in the specification and claims, the singular forms “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a sample” includes a plurality of samples, including mixtures thereof.


As used herein, the terms “treatment” or “treating” are used in reference to a pharmaceutical or other intervention regimen for obtaining beneficial or desired results in the recipient. Beneficial or desired results include but are not limited to a therapeutic benefit and/or a prophylactic benefit. A therapeutic benefit may refer to eradication or amelioration of symptoms or of an underlying disorder being treated. Also, a therapeutic benefit can be achieved with the eradication or amelioration of one or more of the physiological symptoms associated with the underlying disorder such that an improvement is observed in the subject, notwithstanding that the subject may still be afflicted with the underlying disorder. A prophylactic effect includes delaying, preventing, or eliminating the appearance of a disease or condition, delaying or eliminating the onset of symptoms of a disease or condition, slowing, halting, or reversing the progression of a disease or condition, or any combination thereof. For prophylactic benefit, a subject at risk of developing a particular disease, or to a subject reporting one or more of the physiological symptoms of a disease may undergo treatment, even though a diagnosis of this disease may not have been made.


The term “a therapeutically effective amount” of a compound of the present application refers to an amount of the compound of the present application that will elicit the biological or medical response of a subject, for example, reduction or inhibition of tumor cell proliferation, or ameliorate symptoms, alleviate conditions, slow or delay disease progression, or prevent a disease, etc. In one non-limiting embodiment, the term “a therapeutically effective amount” refers to the amount of a compound of the present application that, when administered to a subject, is effective to at least partially alleviate, inhibit, prevent and/or ameliorate a condition, or a disorder or a disease, or at least partially inhibit activity of a targeted enzyme or receptor.


The terms “determining,” “measuring,” “evaluating,” “assessing,” “assaying,” and “analyzing” are often used interchangeably herein to refer to forms of measurement. The terms include determining if an element is present or not (for example, detection). These terms can include quantitative, qualitative or quantitative and qualitative determinations. Assessing can be relative or absolute. “Detecting the presence of” can include determining the amount of something present in addition to determining whether it is present or absent depending on the context.


The terms “subject,” “individual,” or “patient” are often used interchangeably herein. A “subject” can be a biological entity containing expressed genetic materials. The biological entity can be a plant, animal, or microorganism, including, for example, bacteria, viruses, fungi, and protozoa. The subject can be tissues, cells and their progeny of a biological entity obtained in vivo or cultured in vitro. The subject can be a mammal. The mammal can be a human. The subject may be diagnosed or suspected of being at high risk for a disease. In some cases, the subject is not necessarily diagnosed or suspected of being at high risk for the disease.


The term “in vivo” is used to describe an event that takes place in a subject's body.


The term “ex vivo” is used to describe an event that takes place outside of a subject's body. An ex vivo assay is not performed on a subject. Rather, it is performed upon a sample separate from a subject. An example of an ex vivo assay performed on a sample is an “in vitro” assay.


The term “in vitro” is used to describe an event that takes places contained in a container for holding laboratory reagent such that it is separated from the biological source from which the material is obtained. In vitro assays can encompass cell-based assays in which living or dead cells are employed. In vitro assays can also encompass a cell-free assay in which no intact cells are employed.


As used herein, the term “about” a number refers to that number plus or minus 10% of that number. The term “about” a range refers to that range minus 10% of its lowest value and plus 10% of its greatest value.


As used herein, the terms “treatment” or “treating” are used in reference to a pharmaceutical or other intervention regimen for obtaining beneficial or desired results in the recipient. Beneficial or desired results include but are not limited to a therapeutic benefit and/or a prophylactic benefit. A therapeutic benefit may refer to eradication or amelioration of symptoms or of an underlying disorder being treated. Also, a therapeutic benefit can be achieved with the eradication or amelioration of one or more of the physiological symptoms associated with the underlying disorder such that an improvement is observed in the subject, notwithstanding that the subject may still be afflicted with the underlying disorder. A prophylactic effect includes delaying, preventing, or eliminating the appearance of a disease or condition, delaying or eliminating the onset of symptoms of a disease or condition, slowing, halting, or reversing the progression of a disease or condition, or any combination thereof. For prophylactic benefit, a subject at risk of developing a particular disease, or to a subject reporting one or more of the physiological symptoms of a disease may undergo treatment, even though a diagnosis of this disease may not have been made.


The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.


EXEMPLARY EMBODIMENTS

Among the exemplary embodiments are:


Embodiment 1: An antisense oligonucleotide, comprising a sequence complementary to a target nucleic acid sequence of a FOXG1 nucleic acid.


Embodiment 2: The antisense oligonucleotide of embodiment 1, wherein antisense oligonucleotide comprises a modification.


Embodiment 3: The antisense oligonucleotide of embodiment 2, wherein the modification comprises a modified inter-nucleoside linker, a modified nucleoside, or a combination thereof.


Embodiment 4: The antisense oligonucleotide of embodiment 3, wherein the antisense oligonucleotide comprises a modified inter-nucleoside linkage.


Embodiment 5: The antisense oligonucleotide of embodiment 4, wherein the modified inter-nucleoside linkage is a phosphorothioate inter-nucleoside linkage.


Embodiment 6: The antisense oligonucleotide of any one of embodiments 3 to 5, wherein the antisense oligonucleotide comprises a phosphodiester inter-nucleoside linkage.


Embodiment 7: The antisense oligonucleotide of any one of embodiments 3 to 6, wherein the antisense oligonucleotide comprises a modified nucleoside.


Embodiment 8: The antisense oligonucleotide of embodiment 7, wherein the modified nucleoside comprises a modified sugar.


Embodiment 9: The antisense oligonucleotide of embodiment 8, wherein the modified sugar is a bicyclic sugar.


Embodiment 10: The antisense oligonucleotide of embodiment 8, wherein the modified sugar comprises a 2′-O-methoxyethyl (MOE) group.


Embodiment 11: The antisense oligonucleotide of any one of embodiments 1 to 10, wherein the FOXG1 nucleic acid comprises a 5′ untranslated region (5′ UTR) and a 3′ untranslated region (3′ UTR), and wherein the target sequence is located at the 5′ UTR or the 3′ UTR of the FOXG1 nucleic acid.


Embodiment 12: The antisense oligonucleotide of embodiment 11, wherein the target sequence is located at the 3′ UTR region of the FOXG1 nucleic acid.


Embodiment 13: The antisense oligonucleotide of embodiment 12, wherein the target sequence is located within a NM_005249.5_2000-2200_as region of the FOXG1 nucleic acid.


Embodiment 14: The antisense oligonucleotide of embodiment 13, wherein the antisense oligonucleotide comprises SEQ ID NO: 100 or SEQ ID NO:103.


Embodiment 15: The antisense oligonucleotide of embodiment 12, wherein the target sequence is located within a NM_005249.5_2900-3000_as region of the FOXG1 nucleic acid.


Embodiment 16: The antisense oligonucleotide of embodiment 13, wherein the antisense oligonucleotide comprises SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289.


Embodiment 17: The antisense oligonucleotide of any one of embodiments 1 to 16, wherein the antisense oligonucleotide is a single-stranded modified oligonucleotide


Embodiment 18: The antisense oligonucleotide of any one of embodiments 1 to 17, wherein the FOXG1 nucleic acid molecule is a ribonucleic acid (RNA).


Embodiment 19: The antisense oligonucleotide of embodiment 18, wherein the RNA molecule is a messenger RNA (mRNA) molecule.


Embodiment 20: The antisense oligonucleotide of any one of embodiments 18 to 19, wherein the antisense oligonucleotide inhibits regulatory elements (e.g. miRNA suppression, suppression by nucleic acid-binding proteins, etc.) that reduce translation of the FOXG1 RNA.


Embodiment 21: The antisense oligonucleotide of any one of embodiments 18 to 19, wherein the antisense oligonucleotide inhibits regulatory elements that reduce stability of the FOXG1 RNA.


Embodiment 22: The antisense oligonucleotide of embodiment 21, wherein the antisense oligonucleotide inhibits regulatory elements (e.g. miRNA suppression, suppression by nucleic acid-binding proteins, etc.) located within the 3′ UTR of the FOXG1 RNA.


Embodiment 23: The antisense oligonucleotide of embodiment 21, wherein the antisense oligonucleotide sterically inhibits (1) miRNA binding and suppression of FOXG1 translation and/or (2) an RNA binding protein from binding to a regulatory sequence of the FOXG1 RNA and destabilizing the FOXG1 RNA.


Embodiment 24: The antisense oligonucleotide of embodiment 21, wherein the antisense oligonucleotide inhibits nuclease digestion of the FOXG1 RNA.


Embodiment 25: A pharmaceutical composition comprising the antisense oligonucleotide of any one of embodiments 1 to 24 and a pharmaceutically acceptable carrier or diluent.


Embodiment 26: A method of modulating expression of a FOXG1 in a cell, comprising contacting the cell with a composition comprising an antisense oligonucleotide complementary to a target nucleic acid sequence of a FOXG1 nucleic acid.


Embodiment 27: The method of embodiment 26, wherein the cell is a located in a brain of an individual.


Embodiment 28: The method of embodiment 27, wherein the individual is a human.


Embodiment 29: The method of embodiment 27, wherein the individual comprises a mutated FOXG1 gene.


Embodiment 30: The method of embodiment 27, wherein the individual has a FOXG1 disease or disorder.


Embodiment 31: The method of embodiment 30, wherein the FOXG1 disease or disorder is FOXG1 syndrome.


Embodiment 32: The method of any one of embodiments 26 to 31, wherein the FOXG1 nucleic acid is a ribonucleic acid (RNA).


Embodiment 33: The method of embodiment 32, wherein the RNA is a messenger RNA (mRNA).


Embodiment 34: The antisense oligonucleotide of any one of embodiments 32 to 33, wherein the antisense oligonucleotide inhibits regulatory elements (e.g. miRNA suppression, suppression by nucleic acid-binding proteins, nuclease digestion, etc.) that reduce translation or stability of the FOXG1 RNA, thereby increasing an amount of FOXG1 protein in a cell.


Embodiment 35: The method of any one of embodiments 26 to 34, wherein the antisense oligonucleotide is a single-stranded modified oligonucleotide.


Embodiment 36: The method of any one of embodiments 26 to 35, wherein the antisense oligonucleotide comprises at least one modified inter-nucleoside linkage.


Embodiment 37: The method of embodiment 36, wherein the modified inter-nucleoside linkage is a phosphorothioate inter-nucleoside linkage.


Embodiment 38: The method of any one of embodiments 26 to 37, wherein the antisense oligonucleotide comprises at least one phosphodiester inter-nucleoside linkage.


Embodiment 39: The method of any one of embodiments 26 to 38, wherein the antisense oligonucleotide comprises a modified nucleoside.


Embodiment 40: The method of embodiment 39, wherein the modified nucleoside comprises a modified sugar.


Embodiment 41: The method of embodiment 39, wherein the modified sugar is a bicyclic sugar.


Embodiment 42: The method of embodiment 39, wherein the modified sugar comprises a 2′-O-methoxyethyl group.


Embodiment 43: The method of any one of embodiments 26 to 42, wherein the antisense oligonucleotide comprises at least one phosphodiester inter-nucleoside linkage.


Embodiment 44: The method of any one of embodiments 27 to 43, wherein the target nucleic acid sequence is located at the 3′ UTR region of the FOXG1 nucleic acid.


Embodiment 45: The method of any one of embodiments 26 to 44, wherein the target sequence is located within a NM_005249.5_2000-2200_as region of the FOXG1 nucleic acid.


Embodiment 46: The method of embodiment 45, wherein the antisense oligonucleotide comprises SEQ ID NO: 100 or SEQ ID NO:103.


Embodiment 47: The method of any one of embodiments 26 to 44, wherein the target sequence is located within a NM_005249.5_2900-3000_as region of the FOXG1 nucleic acid.


Embodiment 48: The method of embodiment 47, wherein the antisense oligonucleotide comprises SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289.


Embodiment 49: The method of any one of embodiments 26 to 48, wherein modulating expression comprises increasing expression of a FOXG1 protein in the cell.


Embodiment 50: The method of any one of embodiments 26 to 49, wherein modulating expression comprises increasing stability or half-life of the FOXG1 nucleic acid in the cell.


Embodiment 51: The method of any one of embodiments 26 to 50, wherein modulating expression comprises increasing translation of a FOXG1 protein in the cell.


Embodiment 52: The method of any one of embodiments 26 to 51, wherein the antisense oligonucleotide is administered to the individual by intrathecal injection, intracerebroventricular injection, inhalation, parenteral injection or infusion, or orally.


Embodiment 53: A method of treating or ameliorating a FOXG1 disease or disorder in an individual having, or at risk of having, the FOXG1 disease or disorder, comprising administering to the individual an antisense oligonucleotide, wherein the antisense oligonucleotide comprises a sequence complementary to a target sequence of the FOXG1 nucleic acid, thereby treating or ameliorating a FOXG1 disease in the individual.


Embodiment 54: The method of embodiment 53, wherein the individual is a human.


Embodiment 55: The method of embodiment 54, wherein the human is an unborn human.


Embodiment 56: The method of any one of embodiments 53 to 55, wherein the individual comprises a mutated FOXG1 gene.


Embodiment 57: The method of any one of embodiments 53 to 56, wherein the FOXG1 disease or disorder is FOXG1 syndrome.


Embodiment 58: The method of any one of embodiments 53 to 57, wherein the FOXG1 nucleic acid is a ribonucleic acid (RNA).


Embodiment 59: The method of embodiment 58, wherein the RNA molecule is a messenger RNA (mRNA).


Embodiment 60: The method of any one of embodiments 53 to 59, wherein the target sequence is located at a 3′ UTR region of the FOXG1 nucleic acid.


Embodiment 61: The method of any one of embodiments 53 to 60, wherein the target sequence is located within a NM_005249.5_2000-2200_as region of the FOXG1 nucleic acid.


Embodiment 62: The method of embodiment 61, wherein the antisense oligonucleotide comprises SEQ ID NO: 100, SEQ ID NO:103, or a combination thereof.


Embodiment 63: The method of any one of embodiments 53 to 60, wherein the target sequence is located within a NM_005249.5_2900-3000_as region of the FOXG1 nucleic acid.


Embodiment 64: The method of embodiment 63, wherein the antisense oligonucleotide comprises SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, SEQ ID NO: 289, or any combination thereof.


Embodiment 65: The method of any one of embodiments 63 to 64, wherein the antisense oligonucleotide modulates expression of the FOXG1 nucleic acid in the individual.


Embodiment 66: The method of embodiment 65, wherein modulating expression comprises increasing stability or half-life of the FOXG1 nucleic acid in the individual.


Embodiment 67: The method of any one of embodiments 65 to 66, wherein modulating expression comprises increasing translation of a FOXG1 protein in the individual.


Embodiment 68: The method of any one of embodiments 65 to 66, wherein modulating expression comprises increasing translation of a FOXG1 protein in the individual.


Embodiment 69: The method of any one of embodiments 65 to 68, wherein modulating expression comprises increasing an amount of FOXG1 a cell of the individual.


Embodiment 70: The method of embodiment 69, wherein the cell is located in the brain of the individual.


Embodiment 71: The method of embodiment 70, wherein the cell is an astrocyte or a fibroblast.


Embodiment 72: The method of embodiment 27, wherein the cell is an astrocyte or a fibroblast


Embodiment 73: An antisense oligonucleotide comprising an antisense oligonucleotide sequence that hybridizes to a target nucleic acid sequence located within positions 2000-2100 or 2900-3000 of a FOXG1 nucleic acid (e.g., FOXG1 mRNA).


Embodiment 74: The antisense oligonucleotide of embodiment 73, wherein antisense oligonucleotide comprises a modification.


Embodiment 75: The antisense oligonucleotide of embodiment 74, wherein the modification comprises a modified inter-nucleoside linker, a modified nucleoside, or a combination thereof.


Embodiment 76 The antisense oligonucleotide of embodiment 75, wherein the antisense oligonucleotide comprises a modified inter-nucleoside linkage.


Embodiment 77: The antisense oligonucleotide of any one of embodiments 73 to 76, wherein the antisense oligonucleotide sequence comprises SEQ ID NO: 100, SEQ ID NO:103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289.


Embodiment 78: The antisense oligonucleotide of any one of embodiments 73 to 76, wherein the antisense oligonucleotide hybridizes to one or more nucleotides within or adjacent to a position on the FOXG1 nucleic acid targeted by SEQ ID NO: 100, SEQ ID NO:103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289.


Embodiment 79: The antisense oligonucleotide of any one of embodiments 73 to 76, wherein the antisense oligonucleotide hybridizes to one or more nucleotides within a position on the FOXG1 nucleic acid targeted by SEQ ID NO: 100, SEQ ID NO:103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289.


Embodiment 80: The antisense oligonucleotide of any one of embodiments 73 to 79, wherein the antisense oligonucleotide sequence comprises 80% sequence identity or greater to SEQ ID NO: 100, SEQ ID NO: 103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289


Embodiment 81: The antisense oligonucleotide of any one of embodiments 73 to 79, wherein the antisense oligonucleotide sequence comprises 90% sequence identity or greater to SEQ ID NO: 100, SEQ ID NO: 103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289.


Embodiment 82: The antisense oligonucleotide of any one of embodiments 73 to 79, wherein the antisense oligonucleotide sequence comprises 10 or more contiguous nucleotides selected from a sequence within SEQ ID NO: 100, SEQ ID NO: 103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289


Examples

The following examples are included for illustrative purposes only and are not intended to limit the scope of the present disclosure.


Example 1: Design and Selection of ASOs

Non-cleaving antisense oligonucleotides (“oligos”) against the human FOXG1 mRNA were chosen as follows. The full-length human FOXG1 mRNA (accession number NM_005249.5) was downloaded from the NCBI RefSeq database and served as template for all designs. All possible twenty-mer (“20 mer”) nucleotide subsequences that were reverse-complementary to the FOXG1 5′-UTR and 3′-UTR (NM_005249.5 coordinates 1-493 and 1964-3491, respectively) were assembled. Thermal and sequence characteristics were then used to initially subset the oligos as follows:

    • 5′-UTR: GC content 15-70%; Tm 25-70° C.; Thairpin<40° C.; Thomodimer<30° C.; no G homopolymers ≥4 bases long; no A, T, or C homopolymers ≥6 bases long
    • 3′-UTR: GC content 20-60%; Tm 30-65° C.; Thairpin<35° C.; Thomodimer<25° C.; no G homopolymers ≥4 bases long; no A, T, or C homopolymers ≥6 bases long


Different characteristics were used in the initial selection step (above) for 5′-UTR and 3′-UTR oligos due to the larger number of candidates for the 3′-UTR. In the above, Tm=Melting temperature of hybridization; Thairpin=temperature of hairpin formation; Thomodimer=temperature of homodimer formation, as predicted by the Biopython software package (iittplibio.python.org).


These selected 20 mers were then further selected for specificity via sequence alignment to the complete human RefSeq unspliced transcriptome (downloaded Mar. 26, 2020). Alignment was conducted using the FASTA software suite (https://fasta.bioch.virginia.edu/fasta/fasta_list.html). Alignments were parsed using custom software, and the “off-target” score for each oligo was calculated as the lowest number of mismatches to any transcript other than FOXG1.


Next, the secondary structure of NM_005249.5 was predicted using the RNAstructure algorithm (https://rna.urmc.rochester.edu/RNAstructure.html). The oligo walk feature was used to predict the ΔG of target mRNA: oligo duplex formation with local structure invasion for each oligo. These predicted ΔG values were used in conjunction with off-target scores (above) to make the final selection of oligos as follows:

    • 5′-UTR (84 oligos): ≥1 mismatch to all human off-target transcripts; no ΔG cutoff
    • 3′-UTR (300 oligo): ≥2 mismatches to all human off-target transcripts; ΔG<−5.8° C.


The resulting set of 384 oligos, off-target scores, and ΔG values is listed in TABLE 1 and TABLE 2. In TABLE 1 and TABLE 2, exemplary chemical modifications are shown wherein “m” denotes 2′-O-Me bases, “d” denotes deoxyribo (DNA) bases, and “s” denotes phosphorothioate backbone.









TABLE 1







Antisense oligonucleotides targeting the 5′ UTR













SEQ


Off-





ID
NUCLEOBASE

Target
ΔG
Exemplary Modified
SEQ ID


NO
SEQUENCE
Oligo Name
Score
Target
Sequence
NO





 1
AGCGATCGA
NM_005249.5_
3
 −4.8
mAsdGsmCsdGsmAsd
385



GGCGGCTAT
9-28_as


TsmCsdGsmAsdGsmG




AG



sdCsmGsdGsmCsdTsm








AsdTsmAsdG






 2
CAGCGATCG
NM_005249.5_
3
−16
mCsdAsmGsdCsmGsd
386



AGGCGGCTA
10-29_as


AsmUsdCsmGsdAsmG




TA



sdGsmCsdGsmGsdCs








mUsdAsmUsdA






 3
ACAGCGATC
NM_005249.5_
3
−16.7
mAsdCsmAsdGsmCsd
387



GAGGCGGCT
11-30_as


GsmAsdTsmCsdGsmA




AT



sdGsmGsdCsmGsdGs








mCsdTsmAsdT






 4
GACAGCGAT
NM_005249.5_
3
−14.1
mGsdAsmCsdAsmGsd
388



CGAGGCGGC
12-31_as


CsmGsdAsmUsdCsmG




TA



sdAsmGsdGsmCsdGs








mGsdCsmUsdA






 5
AGACAGCG
NM_005249.5_1
2
−10.9
mAsdGsmAsdCsmAsd
389



ATCGAGGCG
3-32_as


GsmCsdGsmAsdTsmC




GCT



sdGsmAsdGsmGsdCs








mGsdGsmCsdT






 6
GCAGCAGTC
NM_005249.5_
1
 16.4
mGsdCsmAsdGsmCsd
390



ACAGCAGCA
106-125_as


AsmGsdTsmCsdAsmC




GC



sdAsmGsdCsmAsdGs








mCsdAsmGsdC






 7
CGCAGCAGC
NM_005249.5_
2
  0.4
mCsdGsmCsdAsmGsd
391



AGTCACAGC
110-129_as


CsmAsdGsmCsdAsmG




AG



sdTsmCsdAsmCsdAsm








GsdCsmAsdG






 8
TCGCAGCAG
NM_005249.5_
2
 −3.4
mUsdCsmGsdCsmAsd
392



CAGTCACAG
111-


GsmCsdAsmGsdCsmA




CA
130_as


sdGsmUsdCsmAsdCs








mAsdGsmCsdA






 9
CTCGCAGCA
NM_005249.5_
2
 −5.1
mCsdTsmCsdGsmCsd
393



GCAGTCACA
112-


AsmGsdCsmAsdGsmC




GC
131_as


sdAsmGsdTsmCsdAsm








CsdAsmGsdC






10
TCTCGCAGC
NM_005249.5_
2
 −6.6
mUsdCsmUsdCsmGsd
394



AGCAGTCAC
113-


CsmAsdGsmCsdAsmG




AG
132_as


sdCsmAsdGsmUsdCs








mAsdCsmAsdG






11
CTCTCGCAG
NM_005249.5_
2
−10.9
mCsdTsmCsdTsmCsd
395



CAGCAGTCA
114-


GsmCsdAsmGsdCsmA




CA
133_as


sdGsmCsdAsmGsdTsm








CsdAsmCsdA






12
CCTCTCGCA
NM_005249.5_
2
−13.7
mCsdCsmUsdCsmUsd
396



GCAGCAGTC
115-


CsmGsdCsmAsdGsmC




AC
134_as


sdAsmGsdCsmAsdGs








mUsdCsmAsdC






13
TCCTCTCGC
NM_005249.5_
2
−16.7
mUsdCsmCsdTsmCsd
397



AGCAGCAGT
116-


TsmCsdGsmCsdAsmG




CA
135_as


sdCsmAsdGsmCsdAs








mGsdTsmCsdA






14
CTCCTCTCG
NM_005249.5_
2
−18.8
mCsdTsmCsdCsmUsd
398



CAGCAGCAG
117-


CsmUsdCsmGsdCsmA




TC
136_as


sdGsmCsdAsmGsdCs








mAsdGsmUsdC






15
CCTCCTCTC
NM_005249.5_
2
−22.6
mCsdCsmUsdCsmCsd
399



GCAGCAGCA
118-


TsmCsdTsmCsdGsmCs




GT
137_as


dAsmGsdCsmAsdGsm








CsdAsmGsdT






16
TCCTCCTCT
NM_005249.5_
2
−21.8
mUsdCsmCsdTsmCsd
400



CGCAGCAGC
119-


CsmUsdCsmUsdCsmG




AG
138_as


sdCsmAsdGsmCsdAs








mGsdCsmAsdG






17
CTCCTCCTC
NM_005249.5_
2
−22.7
mCsdTsmCsdCsmUsd
401



TCGCAGCAG
120-


CsmCsdTsmCsdTsmCs




CA
139_as


dGsmCsdAsmGsdCsm








AsdGsmCsdA






18
TCCTCCTCC
NM_005249.5_
2
−23.6
mUsdCsmCsdTsmCsd
402



TCTCGCAGC
122-


CsmUsdCsmCsdTsmC




AG
141_as


sdTsmCsdGsmCsdAsm








GsdCsmAsdG






19
CTCCTCCTC
NM_005249.5_
1
−20.1
mCsdTsmCsdCsmUsd
403



CTCTCGCAG
123-


CsmCsdTsmCsdCsmU




CA
142_as


sdCsmUsdCsmGsdCsm








AsdGsmCsdA






20
TCCTCCTCC
NM_005249.5_
1
−20.8
mUsdCsmCsdTsmCsd
404



TCCTCTCGC
125-


CsmUsdCsmCsdTsmC




AG
144_as


sdCsmUsdCsmUsdCsm








GsdCsmAsdG






21
CTCCTCCTC
NM_005249.5_
1
−17.3
mCsdTsmCsdCsmUsd
405



CTCCTCTCG
126-


CsmCsdTsmCsdCsmU




CA
145_as


sdCsmCsdTsmCsdTsm








CsdGsmCsdA






22
GCTGCTTCC
NM_005249.5_
1
−11.5
mGsdCsmUsdGsmCsd
406



TCCTCCTCC
137-


TsmUsdCsmCsdTsmCs




TC
156_as


dCsmUsdCsmCsdTsm








CsdCsmUsdC






23
CGCTGCTTC
NM_005249.5_
1
 −7.9
mCsdGsmCsdTsmGsd
407



CTCCTCCTC
138-


CsmUsdTsmCsdCsmU




CT
157_as


sdCsmCsdTsmCsdCsm








UsdCsmCsdT






24
TGTACTTCT
NM_005249.5_
2
−14.3
mUsdGsmUsdAsmCsd
408



TGGTCTCCC
179-


TsmUsdCsmUsdTsmG




CC
198_as


sdGsmUsdCsmUsdCs








mCsdCsmCsdC






25
CTGTACTTC
NM_005249.5_
2
−17.5
mCsdTsmGsdTsmAsd
409



TTGGTCTCC
180-


CsmUsdTsmCsdTsmU




CC
199_as


sdGsmGsdTsmCsdTsm








CsdCsmCsdC






26
ACTGTACTT
NM_005249.5_
2
−15.7
mAsdCsmUsdGsmUsd
410



CTTGGTCTC
181-


AsmCsdTsmUsdCsmU




CC
200_as


sdTsmGsdGsmUsdCsm








UsdCsmCsdC






27
AACTGTACT
NM_005249.5_
2
−10.7
mAsdAsmCsdTsmGsd
411



TCTTGGTCT
182-


TsmAsdCsmUsdTsmC




CC
201_as


sdTsmUsdGsmGsdTsm








CsdTsmCsdC






28
CAACTGTAC
NM_005249.5_
2
−11.6
mCsdAsmAsdCsmUsd
412



TTCTTGGTC
183-


GsmUsdAsmCsdTsmU




TC
202_as


sdCsmUsdTsmGsdGsm








UsdCsmUsdC






29
CCAACTGTA
NM_005249.5_
2
−11.9
mCsdCsmAsdAsmCsd
413



CTTCTTGGT
184-


TsmGsdTsmAsdCsmU




CT
203_as


sdTsmCsdTsmUsdGsm








GsdTsmCsdT






30
CCCAACTGT
NM_005249.5_
2
−11
mCsdCsmCsdAsmAsd
414



ACTTCTTGG
185-


CsmUsdGsmUsdAsmC




TC
204_as


sdTsmUsdCsmUsdTsm








GsdGsmUsdC






31
TCCCAACTG
NM_005249.5_
3
−11
mUsdCsmCsdCsmAsd
415



TACTTCTTG
186-


AsmCsdTsmGsdTsmA




GT
205_as


sdCsmUsdTsmCsdTsm








UsdGsmGsdT






32
CTCCCAACT
NM_005249.5_
2
−13.8
mCsdTsmCsdCsmCsd
416



GTACTTCTT
187-


AsmAsdCsmUsdGsmU




GG
206_as


sdAsmCsdTsmUsdCsm








UsdTsmGsdG






33
GCTCCCAAC
NM_005249.5_
2
−15.3
mGsdCsmUsdCsmCsd
417



TGTACTTCT
188-


CsmAsdAsmCsdTsmG




TG
207_as


sdTsmAsdCsmUsdTsm








CsdTsmUsdG






34
CGCTCCCAA
NM_005249.5_
2
−14.8
mCsdGsmCsdTsmCsd
418



CTGTACTTC
189-


CsmCsdAsmAsdCsmU




TT
208_as


sdGsmUsdAsmCsdTsm








UsdCsmUsdT






35
TCGCTCCCA
NM_005249.5_
2
−12
mUsdCsmGsdCsmUsd
419



ACTGTACTT
190-


CsmCsdCsmAsdAsmC




CT
209_as


sdTsmGsdTsmAsdCsm








UsdTsmCsdT






36
CTCGCTCCC
NM_005249.5_
2
−11.5
mCsdTsmCsdGsmCsd
420



AACTGTACT
191-


TsmCsdCsmCsdAsmA




TC
210_as


sdCsmUsdGsmUsdAs








mCsdTsmUsdC






37
CCTCGCTCC
NM_005249.5_
2
−11.5
mCsdCsmUsdCsmGsd
421



CAACTGTAC
192-


CsmUsdCsmCsdCsmA




TT
211_as


sdAsmCsdTsmGsdTsm








AsdCsmUsdT






38
CCCTCGCTC
NM_005249.5_
2
−13.4
mCsdCsmCsdTsmCsd
422



CCAACTGTA
193-


GsmCsdTsmCsdCsmC




CT
212_as


sdAsmAsdCsmUsdGs








mUsdAsmCsdT






39
TCCCTCGCT
NM_005249.5_
2
−13.2
mUsdCsmCsdCsmUsd
423



CCCAACTGT
194-


CsmGsdCsmUsdCsmC




AC
213_as


sdCsmAsdAsmCsdTsm








GsdTsmAsdC






40
CTCCCTCGC
NM_005249.5_
1
−15.5
mCsdTsmCsdCsmCsd
424



TCCCAACTG
195-


TsmCsdGsmCsdTsmCs




TA
214_as


dCsmCsdAsmAsdCsm








UsdGsmUsdA






41
GCTCCCTCG
NM_005249.5_
2
−20.2
mGsdCsmUsdCsmCsd
425



CTCCCAACT
196-


CsmUsdCsmGsdCsmU




GT
215_as


sdCsmCsdCsmAsdAsm








CsdTsmGsdT






42
AGCTCCCTC
NM_005249.5_
3
−18.5
mAsdGsmCsdTsmCsd
426



GCTCCCAAC
197-


CsmCsdTsmCsdGsmC




TG
216_as


sdTsmCsdCsmCsdAsm








AsdCsmUsdG






43
AAGCTCCCT
NM_005249.5_
2
−16.1
mAsdAsmGsdCsmUsd
427



CGCTCCCAA
198-


CsmCsdCsmUsdCsmG




CT
217_as


sdCsmUsdCsmCsdCsm








AsdAsmCsdT






44
GAAGCTCCC
NM_005249.5_
2
 −9.4
mGsdAsmAsdGsmCsd
428



TCGCTCCCA
199-


TsmCsdCsmCsdTsmCs




AC
218_as


dGsmCsdTsmCsdCsm








CsdAsmAsdC






45
TGAAGCTCC
NM_005249.5_
2
−11.1
mUsdGsmAsdAsmGsd
429



CTCGCTCCC
200-


CsmUsdCsmCsdCsmU




AA
219_as


sdCsmGsdCsmUsdCsm








CsdCsmAsdA






46
GTGAAGCTC
NM_005249.5_
2
 −9.7
mGsdTsmGsdAsmAsd
430



CCTCGCTCC
201-


GsmCsdTsmCsdCsmC




CA
220_as


sdTsmCsdGsmCsdTsm








CsdCsmCsdA






47
AAGAAACA
NM_005249.5_
3
 −5.7
mAsdAsmGsdAsmAsd
431



ACCACCGCC
224-


AsmCsdAsmAsdCsmC




CCG
243_as


sdAsmCsdCsmGsdCsm








CsdCsmCsdG






48
AAAGAAAC
NM_005249.5_
2
 −5.7
mAsdAsmAsdGsmAsd
432



AACCACCGC
225-


AsmAsdCsmAsdAsmC




CCC
244_as


sdCsmAsdCsmCsdGsm








CsdCsmCsdC






49
AAAAGAAA
NM_005249.5_
2
 −3
mAsdAsmAsdAsmGsd
433



CAACCACCG
226-


AsmAsdAsmCsdAsmA




CCC
245_as


sdCsmCsdAsmCsdCsm








GsdCsmCsdC






50
AAAAAGAA
NM_005249.5_
2
  0.1
mAsdAsmAsdAsmAsd
434



ACAACCACC
227-


GsmAsdAsmAsdCsmA




GCC
246_as


sdAsmCsdCsmAsdCsm








CsdGsmCsdC






51
CCCCTCAGG
NM_005249.5_
2
 −4
mCsdCsmCsdCsmUsd
435



AATTAGAAA
280-


CsmAsdGsmGsdAsmA




AA
299_as


sdTsmUsdAsmGsdAs








mAsdAsmAsdA






52
ACCCCTCAG
NM_005249.5_
2
 −3.9
mAsdCsmCsdCsmCsd
436



GAATTAGAA
281-


TsmCsdAsmGsdGsmA




AA
300_as


sdAsmUsdTsmAsdGs








mAsdAsmAsdA






53
CACCCCTCA
NM_005249.5_
2
 −1.2
mCsdAsmCsdCsmCsd
437



GGAATTAGA
282-


CsmUsdCsmAsdGsmG




AA
301_as


sdAsmAsdTsmUsdAs








mGsdAsmAsdA






54
CCACCCCTC
NM_005249.5_
2
 −0.8
mCsdCsmAsdCsmCsd
438



AGGAATTAG
283-


CsmCsdTsmCsdAsmG




AA
302_as


sdGsmAsdAsmUsdTs








mAsdGsmAsdA






55
ACCACCCCT
NM_005249.5_
2
 −3.6
mAsdCsmCsdAsmCsd
439



CAGGAATTA
284-


CsmCsdCsmUsdCsmA




GA
303_as


sdGsmGsdAsmAsdTs








mUsdAsmGsdA






56
AACCACCCC
NM_005249.5_
2
 −2.3
mAsdAsmCsdCsmAsd
440



TCAGGAATT
285-


CsmCsdCsmCsdTsmCs




AG
304_as


dAsmGsdGsmAsdAsm








UsdTsmAsdG






57
CAACCACCC
NM_005249.5_
2
  0.2
mCsdAsmAsdCsmCsd
441



CTCAGGAAT
286-


AsmCsdCsmCsdCsmU




TA
305_as


sdCsmAsdGsmGsdAs








mAsdTsmUsdA






58
GCAACCACC
NM_005249.5_
3
  0.8
mGsdCsmAsdAsmCsd
442



CCTCAGGAA
287-


CsmAsdCsmCsdCsmC




TT
306_as


sdTsmCsdAsmGsdGsm








AsdAsmUsdT






59
AGCAACCAC
NM_005249.5_
2
  1.8
mAsdGsmCsdAsmAsd
443



CCCTCAGGA
288-


CsmCsdAsmCsdCsmC




AT
307_as


sdCsmUsdCsmAsdGs








mGsdAsmAsdT






60
CAGCAACCA
NM_005249.5_
2
 −7.1
mCsdAsmGsdCsmAsd
444



CCCCTCAGG
289-


AsmCsdCsmAsdCsmC




AA
308_as


sdCsmCsdTsmCsdAsm








GsdGsmAsdA






61
GCAGCAACC
NM_005249.5_
1
 −9.6
mGsdCsmAsdGsmCsd
445



ACCCCTCAG
290-


AsmAsdCsmCsdAsmC




GA
309_as


sdCsmCsdCsmUsdCsm








AsdGsmGsdA






62
AAGCAGCA
NM_005249.5_
1
 −7.6
mAsdAsmGsdCsmAsd
446



ACCACCCCT
292-


GsmCsdAsmAsdCsmC




CAG
311_as


sdAsmCsdCsmCsdCsm








UsdCsmAsdG






63
AAAGCAGC
NM_005249.5_
2
  2.4
mAsdAsmAsdGsmCsd
447



AACCACCCC
293-


AsmGsdCsmAsdAsmC




TCA
312_as


sdCsmAsdCsmCsdCsm








CsdTsmCsdA






64
AAAAGCAG
NM_005249.5_
2
  2.6
mAsdAsmAsdAsmGsd
448



CAACCACCC
294-


CsmAsdGsmCsdAsmA




CTC
313_as


sdCsmCsdAsmCsdCsm








CsdCsmUsdC






65
CAAAAGCA
NM_005249.5_
2
 −1
mCsdAsmAsdAsmAsd
449



GCAACCACC
295-


GsmCsdAsmGsdCsmA




CCT
314_as


sdAsmCsdCsmAsdCsm








CsdCsmCsdT






66
GCAAAAGC
NM_005249.5_
2
 −1.4
mGsdCsmAsdAsmAsd
450



AGCAACCAC
296-


AsmGsdCsmAsdGsmC




CCC
315_as


sdAsmAsdCsmCsdAs








mCsdCsmCsdC






67
AGCAAAAG
NM_005249.5_
2
  1
mAsdGsmCsdAsmAsd
451



CAGCAACCA
297-


AsmAsdGsmCsdAsmG




CCC
316_as


sdCsmAsdAsmCsdCsm








AsdCsmCsdC






68
TAGCAAAAG
NM_005249.5_
1
  0
mUsdAsmGsdCsmAsd
452



CAGCAACCA
298-


AsmAsdAsmGsdCsmA




CC
317_as


sdGsmCsdAsmAsdCs








mCsdAsmCsdC






69
GTAGCAAAA
NM_005249.5_
2
 −2.6
mGsdTsmAsdGsmCsd
453



GCAGCAACC
299-


AsmAsdAsmAsdGsmC




AC
318_as


sdAsmGsdCsmAsdAs








mCsdCsmAsdC






70
TGTAGCAAA
NM_005249.5_
1
 −5.3
mUsdGsmUsdAsmGsd
454



AGCAGCAAC
300-


CsmAsdAsmAsdAsmG




CA
319_as


sdCsmAsdGsmCsdAs








mAsdCsmCsdA






71
ATGTAGCAA
NM_005249.5_
2
 −6.1
mAsdTsmGsdTsmAsd
455



AAGCAGCA
301-


GsmCsdAsmAsdAsmA




ACC
320_as


sdGsmCsdAsmGsdCs








mAsdAsmCsdC






72
CATGTAGCA
NM_005249.5_
2
 −3.5
mCsdAsmUsdGsmUsd
456



AAAGCAGC
302-


AsmGsdCsmAsdAsmA




AAC
321_as


sdAsmGsdCsmAsdGs








mCsdAsmAsdC






73
TCATGTAGC
NM_005249.5_
2
 −5.3
mUsdCsmAsdTsmGsd
457



AAAAGCAG
303-


TsmAsdGsmCsdAsmA




CAA
322_as


sdAsmAsdGsmCsdAs








mGsdCsmAsdA






74
GTCATGTAG
NM_005249.5_
2
 −5.7
mGsdTsmCsdAsmUsd
458



CAAAAGCA
304-


GsmUsdAsmGsdCsmA




GCA
323_as


sdAsmAsdAsmGsdCs








mAsdGsmCsdA






75
AGTCATGTA
NM_005249.5_
2
 −8.1
mAsdGsmUsdCsmAsd
459



GCAAAAGC
305-


TsmGsdTsmAsdGsmC




AGC
324_as


sdAsmAsdAsmAsdGs








mCsdAsmGsdC






76
AAGTCATGT
NM_005249.5_
2
 −5.5
mAsdAsmGsdTsmCsd
460



AGCAAAAG
306-


AsmUsdGsmUsdAsmG




CAG
325_as


sdCsmAsdAsmAsdAs








mGsdCsmAsdG






77
CAAGTCATG
NM_005249.5_
1
 −5.7
mCsdAsmAsdGsmUsd
461



TAGCAAAAG
307-


CsmAsdTsmGsdTsmA




CA
326_as


sdGsmCsdAsmAsdAs








mAsdGsmCsdA






78
GCAAGTCAT
NM_005249.5_
2
 −8.1
mGsdCsmAsdAsmGsd
462



GTAGCAAAA
308-


TsmCsdAsmUsdGsmU




GC
327_as


sdAsmGsdCsmAsdAs








mAsdAsmGsdC






79
GGCAAGTCA
NM_005249.5_
2
−10.4
mGsdGsmCsdAsmAsd
463



TGTAGCAAA
309-


GsmUsdCsmAsdTsmG




AG
328_as


sdTsmAsdGsmCsdAsm








AsdAsmAsdG






80
TGGCAAGTC
NM_005249.5_
2
 −9.2
mUsdGsmGsdCsmAsd
464



ATGTAGCAA
310-


AsmGsdTsmCsdAsmU




AA
329_as


sdGsmUsdAsmGsdCs








mAsdAsmAsdA






81
CTGGCAAGT
NM_005249.5_
2
−11.1
mCsdTsmGsdGsmCsd
465



CATGTAGCA
311-


AsmAsdGsmUsdCsmA




AA
330_as


sdTsmGsdTsmAsdGsm








CsdAsmAsdA






82
GCTGGCAAG
NM_005249.5_
2
−12.5
mGsdCsmUsdGsmGsd
466



TCATGTAGC
312-


CsmAsdAsmGsdTsmC




AA
331_as


sdAsmUsdGsmUsdAs








mGsdCsmAsdA






83
CGCTGGCAA
NM_005249.5_
2
−10.6
mCsdGsmCsdTsmGsd
467



GTCATGTAG
313-


GsmCsdAsmAsdGsmU




CA
332_as


sdCsmAsdTsmGsdTsm








AsdGsmCsdA






84
GCGCTGGCA
NM_005249.5_
3
-14.6
mGsdCsmGsdCsmUsd
468



AGTCATGTA
314-


GsmGsdCsmAsdAsmG




GC
333_as


sdTsmCsdAsmUsdGsm








UsdAsmGsdC
















TABLE 2







Antisense oligonucleotides targeting the 3′ UTR













SEQ


Off-





ID
NUCLEOBASE
Oligo
Target
AG
Exemplary Modified
SEQ ID


NO
SEQUENCE
Name
Score
Target
Sequence
NO
















85
TCACTTACAG
NM_00524
2
−8.3
mUsdCsmAsdCsmUsd
469



TCTGGTCCCA
9.5_1970-


TsmAsdCsmAsdGsmU





1989_as


sdCsmUsdGsmGsdTs








mCsdCsmCsdA






86
TTCACTTACA
NM_00524
2
−7.6
mUsdTsmCsdAsmCsd
470



GTCTGGTCCC
9.5_1971-


TsmUsdAsmCsdAsmG





1990_as


sdTsmCsdTsmGsdGsm








UsdCsmCsdC






87
ACGTTCACTT
NM_00524
3
−8
mAsdCsmGsdTsmUsd
471



ACAGTCTGG
9.5_1974-


CsmAsdCsmUsdTsmA




T
1993_as


sdCsmAsdGsmUsdCs








mUsdGsmGsdT






88
GTGTAAAAC
NM_00524
2
−7.4
mGsdTsmGsdTsmAsd
472



GTTCACTTAC
9.5_1981-


AsmAsdAsmCsdGsmU




A
2000_as


sdTsmCsdAsmCsdTsm








UsdAsmCsdA






89
TGTGTAAAA
NM_00524
2
−8.8
mUsdGsmUsdGsmUsd
473



CGTTCACTTA
9.5_1982-


AsmAsdAsmAsdCsmG




C
2001_as


sdTsmUsdCsmAsdCsm








UsdTsmAsdC






90
GTGTGTAAA
NM_00524
2
−8
mGsdTsmGsdTsmGsd
474



ACGTTCACTT
9.5_1983-


TsmAsdAsmAsdAsmC




A
2002_as


sdGsmUsdTsmCsdAs








mCsdTsmUsdA






91
TGTGTGTAA
NM_00524
2
−7
mUsdGsmUsdGsmUsd
475



AACGTTCACT
9.5_1984-


GsmUsdAsmAsdAsm




T
2003_as


AsdCsmGsdTsmUsdCs








mAsdCsmUsdT






92
TGCAAATGT
NM_00524
2
−6.9
mUsdGsmCsdAsmAsd
476



GTGTAAAAC
9.5_1990-


AsmUsdGsmUsdGsm




GT
2009_as


UsdGsmUsdAsmAsdA








smAsdCsmGsdT






93
ATGCAAATG
NM_00524
2
−6.6
mAsdTsmGsdCsmAsd
477



TGTGTAAAA
9.5_1991-


AsmAsdTsmGsdTsmG




CG
2010_as


sdTsmGsdTsmAsdAsm








AsdAsmCsdG






94
AATGCAAAT
NM_00524
2
−8.1
mAsdAsmUsdGsmCsd
478



GTGTGTAAA
9.5_1992-


AsmAsdAsmUsdGsm




AC
2011_as


UsdGsmUsdGsmUsdA








smAsdAsmAsdC






95
CAATGCAAA
NM_00524
2
−11
mCsdAsmAsdTsmGsd
479



TGTGTGTAA
9.5_1993-


CsmAsdAsmAsdTsmG




AA
2012_as


sdTsmGsdTsmGsdTsm








AsdAsmAsdA






96
TTTACAATGC
NM_00524
2
−15.1
mUsdTsmUsdAsmCsd
480



AAATGTGTG
9.5_1997-


AsmAsdTsmGsdCsmA




T
2016_as


sdAsmAsdTsmGsdTsm








GsdTsmGsdT






97
AAATACCTG
NM_00524
2
−10
mAsdAsmAsdTsmAsd
481



GACTTATTTT
9.5_2027-


CsmCsdTsmGsdGsmA




T
2046_as


sdCsmUsdTsmAsdTsm








UsdTsmUsdT






98
AAAATACCT
NM_00524
2
−9.4
mAsdAsmAsdAsmUsd
482



GGACTTATTT
9.5_2028-


AsmCsdCsmUsdGsmG




T
2047_as


sdAsmCsdTsmUsdAs








mUsdTsmUsdT






99
AAAAATACC
NM_00524
2
−7.9
mAsdAsmAsdAsmAsd
483



TGGACTTATT
9.5_2029-


TsmAsdCsmCsdTsmG




T
2048_as


sdGsmAsdCsmUsdTs








mAsdTsmUsdT






100
AACGTACAG
NM_00524
2
−11.2
mAsdAsmCsdGsmUsd
484



AAATGGGAG
9.5_2061-


AsmCsdAsmGsdAsmA




GG
2080_as


sdAsmUsdGsmGsdGs








mAsdGsmGsdG






101
AAACGTACA
NM_00524
2
−11.6
mAsdAsmAsdCsmGsd
485



GAAATGGGA
9.5_2062-


TsmAsdCsmAsdGsmA




GG
2081_as


sdAsmAsdTsmGsdGs








mGsdAsmGsdG






102
CAAACGTAC
NM_00524
2
−11.1
mCsdAsmAsdAsmCsd
486



AGAAATGGG
9.5_2063-


GsmUsdAsmCsdAsmG




AG
2082_as


sdAsmAsdAsmUsdGs








mGsdGsmAsdG






103
ACAAACGTA
NM_00524
2
−9.7
mAsdCsmAsdAsmAsd
487



CAGAAATGG
9.5_2064-


CsmGsdTsmAsdCsmA




GA
2083_as


sdGsmAsdAsmAsdTs








mGsdGsmGsdA






104
AACAAACGT
NM_00524
2
−10
mAsdAsmCsdAsmAsd
488



ACAGAAATG
9.5_2065-


AsmCsdGsmUsdAsmC




GG
2084_as


sdAsmGsdAsmAsdAs








mUsdGsmGsdG






105
GAACAAACG
NM_00524
2
−6.8
mGsdAsmAsdCsmAsd
489



TACAGAAAT
9.5_2066-


AsmAsdCsmGsdTsmA




GG
2085_as


sdCsmAsdGsmAsdAs








mAsdTsmGsdG






106
CACTCCACA
NM_00524
2
−17.2
mCsdAsmCsdTsmCsd
490



CCTTGTTAGA
9.5_2107-


CsmAsdCsmAsdCsmC




A
2126_as


sdTsmUsdGsmUsdTsm








AsdGsmAsdA






107
ACACTCCAC
NM_00524
2
−18.1
mAsdCsmAsdCsmUsd
491



ACCTTGTTAG
9.5_2108-


CsmCsdAsmCsdAsmC




A
2127_as


sdCsmUsdTsmGsdTsm








UsdAsmGsdA






108
GACACTCCA
NM_00524
2
−18.1
mGsdAsmCsdAsmCsd
492



CACCTTGTTA
9.5_2109-


TsmCsdCsmAsdCsmA




G
2128_as


sdCsmCsdTsmUsdGsm








UsdTsmAsdG






109
TCGCTGACA
NM_00524
2
−10.5
mUsdCsmGsdCsmUsd
493



CTCCACACCT
9.5_2114-


GsmAsdCsmAsdCsmU




T
2133_as


sdCsmCsdAsmCsdAs








mCsdCsmUsdT






110
GTATTCTCCC
NM_00524
2
−7.2
mGsdTsmAsdTsmUsd
49



CACATTGCA
9.5_2135-


CsmUsdCsmCsdCsmC




C
2154_as


sdAsmCsdAsmUsdTs








mGsdCsmAsdC






111
TGTATTCTCC
NM_00524
2
−10
mUsdGsmUsdAsmUsd
495



CCACATTGC
9.5_2136-


TsmCsdTsmCsdCsmCs




A
2155_as


dCsmAsdCsmAsdTsm








UsdGsmCsdA






112
ATGTATTCTC
NM_00524
2
−10.5
mAsdTsmGsdTsmAsd
496



CCCACATTGC
9.5_2137-


TsmUsdCsmUsdCsmC





2156_as


sdCsmCsdAsmCsdAs








mUsdTsmGsdC






113
ACAATGTATT
NM_00524
2
−6.3
mAsdCsmAsdAsmUsd
497



CTCCCCACAT
9.5_2140-


GsmUsdAsmUsdTsmC





2159_as


sdTsmCsdCsmCsdCsm








AsdCsmAsdT






114
TTGACTTCCA
NM_00524
2
−8.1
mUsdTsmGsdAsmCsd
498



AACCTTATAT
9.5_2163-


TsmUsdCsmCsdAsmA





2182_as


sdAsmCsdCsmUsdTsm








AsdTsmAsdT






115
TTTGACTTCC
NM_00524
2
−7.2
mUsdTsmUsdGsmAsd
499



AAACCTTAT
9.5_2164-


CsmUsdTsmCsdCsmA




A
2183_as


sdAsmAsdCsmCsdTsm








UsdAsmUsdA






116
CTACTATAAT
NM_00524
2
−7.4
mCsdTsmAsdCsmUsd
500



TTGACTTCCA
9.5_2173-


AsmUsdAsmAsdTsmU





2192_as


sdTsmGsdAsmCsdTsm








UsdCsmCsdA






117
TCTACTATAA
NM_00524
2
−8
mUsdCsmUsdAsmCsd
501



TTTGACTTCC
9.5_2174-


TsmAsdTsmAsdAsmU





2193_as


sdTsmUsdGsmAsdCs








mUsdTsmCsdC






118
TTCTACTATA
NM_00524
2
−9
mUsdTsmCsdTsmAsd
502



ATTTGACTTC
9.5_2175-


CsmUsdAsmUsdAsmA





2194_as


sdTsmUsdTsmGsdAsm








CsdTsmUsdC






119
CATTCTACTA
NM_00524
2
−7.9
mCsdAsmUsdTsmCsd
503



TAATTTGACT
9.5_2177-


TsmAsdCsmUsdAsmU





2196_as


sdAsmAsdTsmUsdTsm








GsdAsmCsdT






120
ACATTCTACT
NM_00524
2
−9.9
mAsdCsmAsdTsmUsd
504



ATAATTTGAC
9.5_2178-


CsmUsdAsmCsdTsmA





2197_as


sdTsmAsdAsmUsdTsm








UsdGsmAsdC






121
GATACACAT
NM_00524
2
−10.1
mGsdAsmUsdAsmCsd
505



TCTACTATAA
9.5_2183-


AsmCsdAsmUsdTsmC




T
2202_as


sdTsmAsdCsmUsdAs








mUsdAsmAsdT






122
AGATACACA
NM_00524
2
−10.1
mAsdGsmAsdTsmAsd
506



TTCTACTATA
9.5_2184-


CsmAsdCsmAsdTsmU




A
2203_as


sdCsmUsdAsmCsdTsm








AsdTsmAsdA






123
TAGATACAC
NM_00524
2
−10.5
mUsdAsmGsdAsmUsd
507



ATTCTACTAT
9.5_2185-


AsmCsdAsmCsdAsmU




A
2204_as


sdTsmCsdTsmAsdCsm








UsdAsmUsdA






124
TTAGATACA
NM_00524
2
−10.9
mUsdTsmAsdGsmAsd
508



CATTCTACTA
9.5_2186-


TsmAsdCsmAsdCsmA




T
2205_as


sdTsmUsdCsmUsdAs








mCsdTsmAsdT






125
TTTAGATACA
NM_00524
2
−11
mUsdTsmUsdAsmGsd
509



CATTCTACTA
9.5_2187-


AsmUsdAsmCsdAsmC





2206_as


sdAsmUsdTsmCsdTsm








AsdCsmUsdA






126
ATTTAGATAC
NM_00524
2
−11.3
mAsdTsmUsdTsmAsd
510



ACATTCTACT
9.5_2188-


GsmAsdTsmAsdCsmA





2207_as


sdCsmAsdTsmUsdCsm








UsdAsmCsdT






127
TATTTAGATA
NM_00524
2
−6.7
mUsdAsmUsdTsmUsd
511



CACATTCTAC
9.5_2189-


AsmGsdAsmUsdAsmC





2208_as


sdAsmCsdAsmUsdTs








mCsdTsmAsdC






128
CTATTTAGAT
NM_00524
2
−10.2
mCsdTsmAsdTsmUsd
512



ACACATTCTA
9.5_2190-


TsmAsdGsmAsdTsmA





2209_as


sdCsmAsdCsmAsdTsm








UsdCsmUsdA






129
CACTATTTAG
NM_00524
2
−13.6
mCsdAsmCsdTsmAsd
513



ATACACATTC
9.5_2192-


TsmUsdTsmAsdGsmA





2211_as


sdTsmAsdCsmAsdCsm








AsdTsmUsdC






130
GTCACTATTT
NM_00524
2
−14.7
mGsdTsmCsdAsmCsd
514



AGATACACA
9.5_2194-


TsmAsdTsmUsdTsmA




T
2213_as


sdGsmAsdTsmAsdCs








mAsdCsmAsdT






131
AGTCACTATT
NM_00524
2
−13.4
mAsdGsmUsdCsmAsd
515



TAGATACAC
9.5_2195-


CsmUsdAsmUsdTsmU




A
2214_as


sdAsmGsdAsmUsdAs








mCsdAsmCsdA






132
CAGTCACTAT
NM_00524
2
−11.6
mCsdAsmGsdTsmCsd
516



TTAGATACA
9.5_2196-


AsmCsdTsmAsdTsmU




C
2215_as


sdTsmAsdGsmAsdTsm








AsdCsmAsdC






133
AGCAGTCAC
NM_00524
2
−13.1
mAsdGsmCsdAsmGsd
517



TATTTAGATA
9.5_2198-


TsmCsdAsmCsdTsmA




C
2217_as


sdTsmUsdTsmAsdGsm








AsdTsmAsdC






134
AAGCAGTCA
NM_00524
2
−12.2
mAsdAsmGsdCsmAsd
518



CTATTTAGAT
9.5_2199-


GsmUsdCsmAsdCsmU




A
2218_as


sdAsmUsdTsmUsdAs








mGsdAsmUsdA






135
AAAGCAGTC
NM_00524
2
−11.8
mAsdAsmAsdGsmCsd
519



ACTATTTAGA
9.5_2200-


AsmGsdTsmCsdAsmC




T
2219_as


sdTsmAsdTsmUsdTsm








AsdGsmAsdT






136
CAAAGCAGT
NM_00524
2
−12.5
mCsdAsmAsdAsmGsd
520



CACTATTTAG
9.5_2201-


CsmAsdGsmUsdCsmA




A
2220_as


sdCsmUsdAsmUsdTs








mUsdAsmGsdA






137
GCAAAGCAG
NM_00524
2
−13.7
mGsdCsmAsdAsmAsd
521



TCACTATTTA
9.5_2202-


GsmCsdAsmGsdTsmC




G
2221_as


sdAsmCsdTsmAsdTsm








UsdTsmAsdG






138
GGCAAAGCA
NM_00524
2
−14.9
mGsdGsmCsdAsmAsd
522



GTCACTATTT
9.5_2203-


AsmGsdCsmAsdGsmU




A
2222_as


sdCsmAsdCsmUsdAs








mUsdTsmUsdA






139
TGGCAAAGC
NM_00524
2
−15.2
mUsdGsmGsdCsmAsd
523



AGTCACTATT
9.5_2204-


AsmAsdGsmCsdAsmG




T
2223_as


sdTsmCsdAsmCsdTsm








AsdTsmUsdT






140
AATGGCAAA
NM_00524
2
−14.3
mAsdAsmUsdGsmGsd
524



GCAGTCACT
9.5_2206-


CsmAsdAsmAsdGsmC




AT
2225_as


sdAsmGsdTsmCsdAs








mCsdTsmAsdT






141
AAATGGCAA
NM_00524
2
−10.9
mAsdAsmAsdTsmGsd
525



AGCAGTCAC
9.5_2207-


GsmCsdAsmAsdAsmG




TA
2226_as


sdCsmAsdGsmUsdCs








mAsdCsmUsdA






142
GAAATGGCA
NM_00524
2
−13.2
mGsdAsmAsdAsmUsd
526



AAGCAGTCA
9.5_2208-


GsmGsdCsmAsdAsmA




CT
2227_as


sdGsmCsdAsmGsdTs








mCsdAsmCsdT






143
AATGAAATG
NM_00524
2
−10.6
mAsdAsmUsdGsmAsd
527



GCAAAGCAG
9.5_2211-


AsmAsdTsmGsdGsmC




TC
2230_as


sdAsmAsdAsmGsdCs








mAsdGsmUsdC






144
AGGTTTGAA
NM_00524
2
−6.6
mAsdGsmGsdTsmUsd
528



TGAAATGGC
9.5_2218-


TsmGsdAsmAsdTsmG




AA
2237_as


sdAsmAsdAsmUsdGs








mGsdCsmAsdA






145
CAGGTTTGA
NM_00524
2
−8
mCsdAsmGsdGsmUsd
529



ATGAAATGG
9.5_2219-


TsmUsdGsmAsdAsmU




CA
2238_as


sdGsmAsdAsmAsdTs








mGsdGsmCsdA






146
TCAGGTTTGA
NM_00524
2
−7.2
mUsdCsmAsdGsmGsd
530



ATGAAATGG
9.5_2220-


TsmUsdTsmGsdAsmA




C
2239_as


sdTsmGsdAsmAsdAs








mUsdGsmGsdC






147
GTCAGGTTTG
NM_00524
2
−6.4
mGsdTsmCsdAsmGsd
531



AATGAAATG
9.5_2221-


GsmUsdTsmUsdGsmA




G
2240_as


sdAsmUsdGsmAsdAs








mAsdTsmGsdG






148
CTTGTCAGGT
NM_00524
2
−6.2
mCsdTsmUsdGsmUsd
532



TTGAATGAA
9.5_2224-


CsmAsdGsmGsdTsmU




A
2243_as


sdTsmGsdAsmAsdTsm








GsdAsmAsdA






149
CTTAGAGAT
NM_00524
2
−7.7
mCsdTsmUsdAsmGsd
533



AGACTTGTC
9.5_2236-


AsmGsdAsmUsdAsm




AG
2255_as


GsdAsmCsdTsmUsdGs








mUsdCsmAsdG






150
TCTTAGAGAT
NM_00524
2
−11.7
mUsdCsmUsdTsmAsd
534



AGACTTGTC
9.5_2237-


GsmAsdGsmAsdTsmA




A
2256_as


sdGsmAsdCsmUsdTs








mGsdTsmCsdA






151
CTCTTAGAG
NM_00524
2
−13.4
mCsdTsmCsdTsmUsd
535



ATAGACTTGT
9.5_2238-


AsmGsdAsmGsdAsm




C
2257_as


UsdAsmGsdAsmCsdTs








mUsdGsmUsdC






152
GCTCTTAGA
NM_00524
2
−11.7
mGsdCsmUsdCsmUsd
536



GATAGACTT
9.5_2239-


TsmAsdGsmAsdGsmA




GT
2258_as


sdTsmAsdGsmAsdCs








mUsdTsmGsdT






153
GGCTCTTAG
NM_00524
2
−9
mGsdGsmCsdTsmCsd
537



AGATAGACT
9.5_2240-


TsmUsdAsmGsdAsmG




TG
2259_as


sdAsmUsdAsmGsdAs








mCsdTsmUsdG






154
CGGCTCTTAG
NM_00524
3
−8.1
mCsdGsmGsdCsmUsd
538



AGATAGACT
9.5_2241-


CsmUsdTsmAsdGsmA




T
2260_as


sdGsmAsdTsmAsdGs








mAsdCsmUsdT






155
GCGGCTCTTA
NM_00524
3
−6.8
mGsdCsmGsdGsmCsd
539



GAGATAGAC
9.5_2242-


TsmCsdTsmUsdAsmG




T
2261_as


sdAsmGsdAsmUsdAs








mGsdAsmCsdT






156
TGGCGGCTCT
NM_00524
2
−7.2
mUsdGsmGsdCsmGsd
540



TAGAGATAG
9.5_2244-


GsmCsdTsmCsdTsmU




A
2263_as


sdAsmGsdAsmGsdAs








mUsdAsmGsdA






157
TCTGGCGGCT
NM_00524
2
−8.4
mUsdCsmUsdGsmGsd
541



CTTAGAGAT
9.5_2246-


CsmGsdGsmCsdTsmC




A
2265_as


sdTsmUsdAsmGsdAs








mGsdAsmUsdA






158
ATCTGGCGG
NM_00524
2
−10
mAsdTsmCsdTsmGsd
542



CTCTTAGAG
9.5_2247-


GsmCsdGsmGsdCsmU




AT
2266_as


sdCsmUsdTsmAsdGs








mAsdGsmAsdT






159
AATCTGGCG
NM_00524
2
−9.8
mAsdAsmUsdCsmUsd
543



GCTCTTAGA
9.5_2248-


GsmGsdCsmGsdGsmC




GA
2267_as


sdTsmCsdTsmUsdAsm








GsdAsmGsdA






160
TACTGCACA
NM_00524
2
−8.1
mUsdAsmCsdTsmGsd
544



CATGGAAAT
9.5_2263-


CsmAsdCsmAsdCsmA




CT
2282_as


sdTsmGsdGsmAsdAs








mAsdTsmCsdT






161
ATACTGCAC
NM_00524
2
−9.1
mAsdTsmAsdCsmUsd
545



ACATGGAAA
9.5_2264-


GsmCsdAsmCsdAsmC




TC
2283_as


sdAsmUsdGsmGsdAs








mAsdAsmUsdC






162
AATACTGCA
NM_00524
2
−8
mAsdAsmUsdAsmCsd
546



CACATGGAA
9.5_2265-


TsmGsdCsmAsdCsmA




AT
2284_as


sdCsmAsdTsmGsdGs








mAsdAsmAsdT






163
ATAATACTG
NM_00524
2
−8.4
mAsdTsmAsdAsmUsd
547



CACACATGG
9.5_2267-


AsmCsdTsmGsdCsmA




AA
2286_as


sdCsmAsdCsmAsdTsm








GsdGsmAsdA






164
CTTATAATAC
NM_00524
2
−7.6
mCsdTsmUsdAsmUsd
548



TGCACACAT
9.5_2270-


AsmAsdTsmAsdCsmU




G
2289_as


sdGsmCsdAsmCsdAs








mCsdAsmUsdG






165
AACTTATAAT
NM_00524
2
−11.8
mAsdAsmCsdTsmUsd
549



ACTGCACAC
9.5_2272-


AsmUsdAsmAsdTsmA




A
2291_as


sdCsmUsdGsmCsdAs








mCsdAsmCsdA






166
TAACTTATAA
NM_00524
3
−12.2
mUsdAsmAsdCsmUsd
550



TACTGCACA
9.5_2273-


TsmAsdTsmAsdAsmU




C
2292_as


sdAsmCsdTsmGsdCsm








AsdCsmAsdC






167
ATAACTTATA
NM_00524
2
−15.5
mAsdTsmAsdAsmCsd
551



ATACTGCAC
9.5_2274-


TsmUsdAsmUsdAsmA




A
2293_as


sdTsmAsdCsmUsdGs








mCsdAsmCsdA






168
GATAACTTAT
NM_00524
2
−11.9
mGsdAsmUsdAsmAsd
552



AATACTGCA
9.5_2275-


CsmUsdTsmAsdTsmA




C
2294_as


sdAsmUsdAsmCsdTs








mGsdCsmAsdC






169
TGATAACTTA
NM_00524
2
−10.3
mUsdGsmAsdTsmAsd
553



TAATACTGC
9.5_2276-


AsmCsdTsmUsdAsmU




A
2295_as


sdAsmAsdTsmAsdCs








mUsdGsmCsdA






170
ATGATAACTT
NM_00524
2
−8.8
mAsdTsmGsdAsmUsd
554



ATAATACTG
9.5_2277-


AsmAsdCsmUsdTsmA




C
2296_as


sdTsmAsdAsmUsdAs








mCsdTsmGsdC






171
GTTCCATGAT
NM_00524
2
−7.1
mGsdTsmUsdCsmCsd
555



AACTTATAAT
9.5_2282-


AsmUsdGsmAsdTsmA





2301_as


sdAsmCsdTsmUsdAs








mUsdAsmAsdT






172
AGTTCCATG
NM_00524
2
−6.6
mAsdGsmUsdTsmCsd
556



ATAACTTATA
9.5_2283-


CsmAsdTsmGsdAsmU




A
2302_as


sdAsmAsdCsmUsdTs








mAsdTsmAsdA






173
TAGTTCCATG
NM_00524
2
−6.9
mUsdAsmGsdTsmUsd
557



ATAACTTATA
9.5_2284-


CsmCsdAsmUsdGsmA





2303_as


sdTsmAsdAsmCsdTsm








UsdAsmUsdA






174
ATAGTTCCAT
NM_00524
2
−7.2
mAsdTsmAsdGsmUsd
558



GATAACTTAT
9.5_2285-


TsmCsdCsmAsdTsmG





2304_as


sdAsmUsdAsmAsdCs








mUsdTsmAsdT






175
TATAGTTCCA
NM_00524
2
−6.9
mUsdAsmUsdAsmGsd
559



TGATAACTTA
9.5_2286-


TsmUsdCsmCsdAsmU





2305_as


sdGsmAsdTsmAsdAs








mCsdTsmUsdA






176
TCTGCGTCCA
NM_00524
2
−8.1
mUsdCsmUsdGsmCsd
560



CCATATAGTT
9.5_2299-


GsmUsdCsmCsdAsmC





2318_as


sdCsmAsdTsmAsdTsm








AsdGsmUsdT






177
GTCTGCGTCC
NM_00524
2
−10.6
mGsdTsmCsdTsmGsd
561



ACCATATAG
9.5_2300-


CsmGsdTsmCsdCsmA




T
2319_as


sdCsmCsdAsmUsdAs








mUsdAsmGsdT






178
GGTCTGCGTC
NM_00524
3
−10.7
mGsdGsmUsdCsmUsd
562



CACCATATA
9.5_2301-


GsmCsdGsmUsdCsmC




G
2320_as


sdAsmCsdCsmAsdTsm








AsdTsmAsdG






179
AGGTCTGCG
NM_00524
3
−9.5
mAsdGsmGsdTsmCsd
563



TCCACCATAT
9.5_2302-


TsmGsdCsmGsdTsmC




A
2321_as


sdCsmAsdCsmCsdAs








mUsdAsmUsdA






180
AAGGTCTGC
NM_00524
2
−8.9
mAsdAsmGsdGsmUsd
564



GTCCACCAT
9.5_2303-


CsmUsdGsmCsdGsmU




AT
2322_as


sdCsmCsdAsmCsdCsm








AsdTsmAsdT






181
TTCTCAAGGT
NM_00524
2
−12.1
mUsdTsmCsdTsmCsd
565



CTGCGTCCAC
9.5_2308-


AsmAsdGsmGsdTsmC





2327_as


sdTsmGsdCsmGsdTsm








CsdCsmAsdC






182
GTTCTCAAG
NM_00524
2
−16.1
mGsdTsmUsdCsmUsd
566



GTCTGCGTCC
9.5_2309-


CsmAsdAsmGsdGsmU




A
2328_as


sdCsmUsdGsmCsdGs








mUsdCsmCsdA






183
TGTTCTCAAG
NM_00524
2
−17.1
mUsdGsmUsdTsmCsd
567



GTCTGCGTCC
9.5_2310-


TsmCsdAsmAsdGsmG





2329_as


sdTsmCsdTsmGsdCsm








GsdTsmCsdC






184
TTGTTCTCAA
NM_00524
3
−18.5
mUsdTsmGsdTsmUsd
568



GGTCTGCGTC
9.5_2311-


CsmUsdCsmAsdAsmG





2330_as


sdGsmUsdCsmUsdGs








mCsdGsmUsdC






185
GTTGTTCTCA
NM_00524
3
−21.9
mGsdTsmUsdGsmUsd
569



AGGTCTGCG
9.5_2312-


TsmCsdTsmCsdAsmA




T
2331_as


sdGsmGsdTsmCsdTsm








GsdCsmGsdT






186
GGTTGTTCTC
NM_00524
3
−21.9
mGsdGsmUsdTsmGsd
570



AAGGTCTGC
9.5_2313-


TsmUsdCsmUsdCsmA




G
2332_as


sdAsmGsdGsmUsdCs








mUsdGsmCsdG






187
AGGTTGTTCT
NM_00524
2
−20
mAsdGsmGsdTsmUsd
571



CAAGGTCTG
9.5_2314-


GsmUsdTsmCsdTsmC




C
2333_as


sdAsmAsdGsmGsdTs








mCsdTsmGsdC






188
TAGGTTGTTC
NM_00524
2
−16.9
mUsdAsmGsdGsmUsd
572



TCAAGGTCT
9.5_2315-


TsmGsdTsmUsdCsmU




G
2334_as


sdCsmAsdAsmGsdGs








mUsdCsmUsdG






189
TTAGGTTGTT
NM_00524
2
−9.3
mUsdTsmAsdGsmGsd
573



CTCAAGGTCT
9.5_2316-


TsmUsdGsmUsdTsmC





2335_as


sdTsmCsdAsmAsdGs








mGsdTsmCsdT






190
TTTAGGTTGT
NM_00524
2
−8.2
mUsdTsmUsdAsmGsd
574



TCTCAAGGTC
9.5_2317-


GsmUsdTsmGsdTsmU





2336_as


sdCsmUsdCsmAsdAs








mGsdGsmUsdC






191
AATTTAGGTT
NM_00524
2
−6.8
mAsdAsmUsdTsmUsd
575



GTTCTCAAG
9.5_2319-


AsmGsdGsmUsdTsmG




G
2338_as


sdTsmUsdCsmUsdCsm








AsdAsmGsdG






192
CCCATAATTT
NM_00524
2
−9.9
mCsdCsmCsdAsmUsd
576



AGGTTGTTCT
9.5_2324-


AsmAsdTsmUsdTsmA





2343_as


sdGsmGsdTsmUsdGs








mUsdTsmCsdT






193
CCCCATAATT
NM_00524
2
−12.4
mCsdCsmCsdCsmAsd
577



TAGGTTGTTC
9.5_2325-


TsmAsdAsmUsdTsmU





2344_as


sdAsmGsdGsmUsdTs








mGsdTsmUsdC






194
TCCCCATAAT
NM_00524
2
−15.6
mUsdCsmCsdCsmCsd
578



TTAGGTTGTT
9.5_2326-


AsmUsdAsmAsdTsmU





2345_as


sdTsmAsdGsmGsdTsm








UsdGsmUsdT






195
CTCCCCATAA
NM_00524
2
−16.4
mCsdTsmCsdCsmCsd
579



TTTAGGTTGT
9.5_2327-


CsmAsdTsmAsdAsmU





2346_as


sdTsmUsdAsmGsdGs








mUsdTsmGsdT






196
TCTCCCCATA
NM_00524
2
−14.2
mUsdCsmUsdCsmCsd
580



ATTTAGGTTG
9.5_2328-


CsmCsdAsmUsdAsmA





2347_as


sdTsmUsdTsmAsdGsm








GsdTsmUsdG






197
AAATTCTCCC
NM_00524
2
−11.9
mAsdAsmAsdTsmUsd
581



CATAATTTAG
9.5_2332-


CsmUsdCsmCsdCsmC





2351_as


sdAsmUsdAsmAsdTs








mUsdTsmAsdG






198
CAATAAATG
NM_00524
2
−6
mCsdAsmAsdTsmAsd
582



GCCAAAATA
9.5_2410-


AsmAsdTsmGsdGsmC




AT
2429_as


sdCsmAsdAsmAsdAs








mUsdAsmAsdT






199
TCTTTGGTCT
NM_00524
2
−7.2
mUsdCsmUsdTsmUsd
583



AAAAGTAAA
9.5_2469-


GsmGsdTsmCsdTsmA




C
2488_as


sdAsmAsdAsmGsdTs








mAsdAsmAsdC






200
ATCTTTGGTC
NM_00524
2
−5.9
mAsdTsmCsdTsmUsd
584



TAAAAGTAA
9.5_2470-


TsmGsdGsmUsdCsmU




A
2489_as


sdAsmAsdAsmAsdGs








mUsdAsmAsdA






201
AATCTTTGGT
NM_00524
2
−7.5
mAsdAsmUsdCsmUsd
585



CTAAAAGTA
9.5_2471-


TsmUsdGsmGsdTsmC




A
2490_as


sdTsmAsdAsmAsdAs








mGsdTsmAsdA






202
CAATCTTTGG
NM_00524
2
−9.8
mCsdAsmAsdTsmCsd
586



TCTAAAAGT
9.5_2472-


TsmUsdTsmGsdGsmU




A
2491_as


sdCsmUsdAsmAsdAs








mAsdGsmUsdA






203
TTTCTAGAAC
NM_00524
2
−14.7
mUsdTsmUsdCsmUsd
587



CCAATCTTTG
9.5_2483-


AsmGsdAsmAsdCsmC





2502_as


sdCsmAsdAsmUsdCs








mUsdTsmUsdG






204
CATTTTCTAG
NM_00524
2
−15.3
mCsdAsmUsdTsmUsd
588



AACCCAATC
9.5_2486-


TsmCsdTsmAsdGsmA




T
2505_as


sdAsmCsdCsmCsdAs








mAsdTsmCsdT






205
GCATTTTCTA
NM_00524
2
−16.2
mGsdCsmAsdTsmUsd
589



GAACCCAAT
9.5_2487-


TsmUsdCsmUsdAsmG




C
2506_as


sdAsmAsdCsmCsdCs








mAsdAsmUsdC






206
TGCATTTTCT
NM_00524
2
−14.2
mUsdGsmCsdAsmUsd
590



AGAACCCAA
9.5_2488-


TsmUsdTsmCsdTsmA




T
2507_as


sdGsmAsdAsmCsdCs








mCsdAsmAsdT






207
GTGCATTTTC
NM_00524
2
−12.6
mGsdTsmGsdCsmAsd
591



TAGAACCCA
9.5_2489-


TsmUsdTsmUsdCsmU




A
2508_as


sdAsmGsdAsmAsdCs








mCsdCsmAsdA






208
AGTGCATTTT
NM_00524
2
−12.3
mAsdGsmUsdGsmCsd
592



CTAGAACCC
9.5_2490-


AsmUsdTsmUsdTsmC




A
2509_as


sdTsmAsdGsmAsdAs








mCsdCsmCsdA






209
CAAGTGCAT
NM_00524
2
−7.2
mCsdAsmAsdGsmUsd
593



TTTCTAGAAC
9.5_2492-


GsmCsdAsmUsdTsmU




C
2511_as


sdTsmCsdTsmAsdGsm








AsdAsmCsdC






210
CCAAGTGCA
NM_00524
2
−7.6
mCsdCsmAsdAsmGsd
59



TTTTCTAGAA
9.5_2493-


TsmGsdCsmAsdTsmU




C
2512_as


sdTsmUsdCsmUsdAs








mGsdAsmAsdC






211
ACCAAGTGC
NM_00524
2
−11
mAsdCsmCsdAsmAsd
595



ATTTTCTAGA
9.5_2494-


GsmUsdGsmCsdAsmU




A
2513_as


sdTsmUsdTsmCsdTsm








AsdGsmAsdA






212
TACCAAGTG
NM_00524
2
−11.4
mUsdAsmCsdCsmAsd
596



CATTTTCTAG
9.5_2495-


AsmGsdTsmGsdCsmA




A
2514_as


sdTsmUsdTsmUsdCsm








UsdAsmGsdA






213
ATACCAAGT
NM_00524
2
−9
mAsdTsmAsdCsmCsd
597



GCATTTTCTA
9.5_2496-


AsmAsdGsmUsdGsmC




G
2515_as


sdAsmUsdTsmUsdTsm








CsdTsmAsdG






214
TATACCAAG
NM_00524
2
−11.8
mUsdAsmUsdAsmCsd
598



TGCATTTTCT
9.5_2497-


CsmAsdAsmGsdTsmG




A
2516_as


sdCsmAsdTsmUsdTsm








UsdCsmUsdA






215
GTATACCAA
NM_00524
2
−14.8
mGsdTsmAsdTsmAsd
599



GTGCATTTTC
9.5_2498-


CsmCsdAsmAsdGsmU




T
2517_as


sdGsmCsdAsmUsdTs








mUsdTsmCsdT






216
AGTATACCA
NM_00524
2
−15.2
mAsdGsmUsdAsmUsd
600



AGTGCATTTT
9.5_2499-


AsmCsdCsmAsdAsmG




C
2518_as


sdTsmGsdCsmAsdTsm








UsdTsmUsdC






217
TAGTATACC
NM_00524
2
−15.2
mUsdAsmGsdTsmAsd
601



AAGTGCATTT
9.5_2500-


TsmAsdCsmCsdAsmA




T
2519_as


sdGsmUsdGsmCsdAs








mUsdTsmUsdT






218
TTAGTATACC
NM_00524
2
−16.5
mUsdTsmAsdGsmUsd
602



AAGTGCATTT
9.5_2501-


AsmUsdAsmCsdCsmA





2520_as


sdAsmGsdTsmGsdCs








mAsdTsmUsdT






219
ACTTAGTATA
NM_00524
3
−17.8
mAsdCsmUsdTsmAsd
603



CCAAGTGCA
9.5_2503-


GsmUsdAsmUsdAsmC




T
2522_as


sdCsmAsdAsmGsdTs








mGsdCsmAsdT






220
TACTTAGTAT
NM_00524
3
−17.3
mUsdAsmCsdTsmUsd
604



ACCAAGTGC
9.5_2504-


AsmGsdTsmAsdTsmA




A
2523_as


sdCsmCsdAsmAsdGs








mUsdGsmCsdA






221
ATACTTAGTA
NM_00524
2
−16.6
mAsdTsmAsdCsmUsd
605



TACCAAGTG
9.5_2505-


TsmAsdGsmUsdAsmU




C
2524_as


sdAsmCsdCsmAsdAs








mGsdTsmGsdC






222
AATACTTAGT
NM_00524
2
−14.1
mAsdAsmUsdAsmCsd
606



ATACCAAGT
9.5_2506-


TsmUsdAsmGsdTsmA




G
2525_as


sdTsmAsdCsmCsdAsm








AsdGsmUsdG






223
GTTTTAATAC
NM_00524
2
−14.4
mGsdTsmUsdTsmUsd
607



TTAGTATACC
9.5_2511-


AsmAsdTsmAsdCsmU





2530_as


sdTsmAsdGsmUsdAs








mUsdAsmCsdC






224
AGTGTTGCC
NM_00524
2
−8.2
mAsdGsmUsdGsmUsd
608



AACTGAAAC
9.5_2546-


TsmGsdCsmCsdAsmA




AA
2565_as


sdCsmUsdGsmAsdAs








mAsdCsmAsdA






225
CAATTGAAT
NM_00524
2
−13.6
mCsdAsmAsdTsmUsd
609



GGGCAGTGT
9.5_2559-


GsmAsdAsmUsdGsm




TG
2578_as


GsdGsmCsdAsmGsdTs








mGsdTsmUsdG






226
TCAATTGAAT
NM_00524
2
−13.5
mUsdCsmAsdAsmUsd
610



GGGCAGTGT
9.5_2560-


TsmGsdAsmAsdTsmG




T
2579_as


sdGsmGsdCsmAsdGs








mUsdGsmUsdT






227
TTCAATTGAA
NM_00524
2
−13
mUsdTsmCsdAsmAsd
611



TGGGCAGTG
9.5_2561-


TsmUsdGsmAsdAsmU




T
2580_as


sdGsmGsdGsmCsdAs








mGsdTsmGsdT






228
TGAAGGCAA
NM_00524
2
−7.3
mUsdGsmAsdAsmGsd
612



TCGTTAATTT
9.5_2593-


GsmCsdAsmAsdTsmC




T
2612_as


sdGsmUsdTsmAsdAs








mUsdTsmUsdT






229
CTGAAGGCA
NM_00524
2
−9
mCsdTsmGsdAsmAsd
613



ATCGTTAATT
9.5_2594-


GsmGsdCsmAsdAsmU




T
2613_as


sdCsmGsdTsmUsdAs








mAsdTsmUsdT






230
ACTGAAGGC
NM_00524
3
−10
mAsdCsmUsdGsmAsd
614



AATCGTTAAT
9.5_2595-


AsmGsdGsmCsdAsmA




T
2614_as


sdTsmCsdGsmUsdTsm








AsdAsmUsdT






231
AACTGAAGG
NM_00524
2
−10.2
mAsdAsmCsdTsmGsd
615



CAATCGTTA
9.5_2596-


AsmAsdGsmGsdCsmA




AT
2615_as


sdAsmUsdCsmGsdTs








mUsdAsmAsdT






232
AAACTGAAG
NM_00524
2
−8.9
mAsdAsmAsdCsmUsd
616



GCAATCGTT
9.5_2597-


GsmAsdAsmGsdGsmC




AA
2616_as


sdAsmAsdTsmCsdGs








mUsdTsmAsdA






233
CAAACTGAA
NM_00524
2
−7.8
mCsdAsmAsdAsmCsd
617



GGCAATCGT
9.5_2598-


TsmGsdAsmAsdGsmG




TA
2617_as


sdCsmAsdAsmUsdCs








mGsdTsmUsdA






234
ACAAACTGA
NM_00524
2
−8.2
mAsdCsmAsdAsmAsd
618



AGGCAATCG
9.5_2599-


CsmUsdGsmAsdAsmG




TT
2618_as


sdGsmCsdAsmAsdTs








mCsdGsmUsdT






235
ACACAAACT
NM_00524
2
−7.2
mAsdCsmAsdCsmAsd
619



GAAGGCAAT
9.5_2601-


AsmAsdCsmUsdGsmA




CG
2620_as


sdAsmGsdGsmCsdAs








mAsdTsmCsdG






236
GTGACCACA
NM_00524
2
−6.9
mGsdTsmGsdAsmCsd
620



TACATCAAA
9.5_2628-


CsmAsdCsmAsdTsmA




AT
2647_as


sdCsmAsdTsmCsdAsm








AsdAsmAsdT






237
TTAGTGACC
NM_00524
2
−5.9
mUsdTsmAsdGsmUsd
621



ACATACATC
9.5_2631-


GsmAsdCsmCsdAsmC




AA
2650_as


sdAsmUsdAsmCsdAs








mUsdCsmAsdA






238
TTTACCTATA
NM_00524
2
−7.2
mUsdTsmUsdAsmCsd
622



AGTACAATA
9.5_2694-


CsmUsdAsmUsdAsmA




G
2713_as


sdGsmUsdAsmCsdAs








mAsdTsmAsdG






239
GTTTACCTAT
NM_00524
2
−8.4
mGsdTsmUsdTsmAsd
623



AAGTACAAT
9.5_2695-


CsmCsdTsmAsdTsmA




A
2714_as


sdAsmGsdTsmAsdCs








mAsdAsmUsdA






240
GGTTTACCTA
NM_00524
2
−9.9
mGsdGsmUsdTsmUsd
624



TAAGTACAA
9.5_2696-


AsmCsdCsmUsdAsmU




T
2715_as


sdAsmAsdGsmUsdAs








mCsdAsmAsdT






241
ACATATTTGC
NM_00524
2
−6.7
mAsdCsmAsdTsmAsd
625



AAGGTTTAC
9.5_2708-


TsmUsdTsmGsdCsmA




C
2727_as


sdAsmGsdGsmUsdTs








mUsdAsmCsdC






242
TACATATTTG
NM_00524
2
−7.6
mUsdAsmCsdAsmUsd
626



CAAGGTTTA
9.5_2709-


AsmUsdTsmUsdGsmC




C
2728_as


sdAsmAsdGsmGsdTs








mUsdTsmAsdC






243
TTACATATTT
NM_00524
2
−10.4
mUsdTsmAsdCsmAsd
627



GCAAGGTTT
9.5_2710-


TsmAsdTsmUsdTsmG




A
2729_as


sdCsmAsdAsmGsdGs








mUsdTsmUsdA






244
GTTACATATT
NM_00524
2
−13.4
mGsdTsmUsdAsmCsd
628



TGCAAGGTTT
9.5_2711-


AsmUsdAsmUsdTsmU





2730_as


sdGsmCsdAsmAsdGs








mGsdTsmUsdT






245
GGTTACATAT
NM_00524
2
−14.1
mGsdGsmUsdTsmAsd
629



TTGCAAGGTT
9.5_2712-


CsmAsdTsmAsdTsmU





2731_as


sdTsmGsdCsmAsdAs








mGsdGsmUsdT






246
AGGTTACAT
NM_00524
2
−13
mAsdGsmGsdTsmUsd
630



ATTTGCAAG
9.5_2713-


AsmCsdAsmUsdAsmU




GT
2732_as


sdTsmUsdGsmCsdAs








mAsdGsmGsdT






247
CAGGTTACA
NM_00524
2
−8.7
mCsdAsmGsdGsmUsd
631



TATTTGCAAG
9.5_2714-


TsmAsdCsmAsdTsmA




G
2733_as


sdTsmUsdTsmGsdCsm








AsdAsmGsdG






248
ACAGGTTAC
NM_00524
2
−7.1
mAsdCsmAsdGsmGsd
632



ATATTTGCAA
9.5_2715-


TsmUsdAsmCsdAsmU




G
2734_as


sdAsmUsdTsmUsdGs








mCsdAsmAsdG






249
ACACAGGTT
NM_00524
2
−14.1
mAsdCsmAsdCsmAsd
633



ACATATTTGC
9.5_2717-


GsmGsdTsmUsdAsmC




A
2736_as


sdAsmUsdAsmUsdTs








mUsdGsmCsdA






250
AACACAGGT
NM_00524
2
−10.4
mAsdAsmCsdAsmCsd
634



TACATATTTG
9.5_2718-


AsmGsdGsmUsdTsmA




C
2737_as


sdCsmAsdTsmAsdTsm








UsdTsmGsdC






251
GCAACACAG
NM_00524
2
−6.2
mGsdCsmAsdAsmCsd
635



GTTACATATT
9.5_2720-


AsmCsdAsmGsdGsmU




T
2739_as


sdTsmAsdCsmAsdTsm








AsdTsmUsdT






252
GCGCAACAC
NM_00524
3
−9.2
mGsdCsmGsdCsmAsd
636



AGGTTACAT
9.5_2722-


AsmCsdAsmCsdAsmG




AT
2741_as


sdGsmUsdTsmAsdCs








mAsdTsmAsdT






253
TGCGCAACA
NM_00524
2
−9.1
mUsdGsmCsdGsmCsd
637



CAGGTTACA
9.5_2723-


AsmAsdCsmAsdCsmA




TA
2742_as


sdGsmGsdTsmUsdAs








mCsdAsmUsdA






254
TTGCGCAAC
NM_00524
2
−8.8
mUsdTsmGsdCsmGsd
638



ACAGGTTAC
9.5_2724-


CsmAsdAsmCsdAsmC




AT
2743_as


sdAsmGsdGsmUsdTs








mAsdCsmAsdT






255
TTTGCGCAAC
NM_00524
2
−8.8
mUsdTsmUsdGsmCsd
639



ACAGGTTAC
9.5_2725-


GsmCsdAsmAsdCsmA




A
2744_as


sdCsmAsdGsmGsdTs








mUsdAsmCsdA






256
CATTTGCGCA
NM_00524
2
−7.3
mCsdAsmUsdTsmUsd
640



ACACAGGTT
9.5_2727-


GsmCsdGsmCsdAsmA




A
2746_as


sdCsmAsdCsmAsdGs








mGsdTsmUsdA






257
ACTCAAATTT
NM_00524
2
−6.1
mAsdCsmUsdCsmAsd
641



ATGCGGCAT
9.5_2743-


AsmAsdTsmUsdTsmA




T
2762_as


sdTsmGsdCsmGsdGs








mCsdAsmUsdT






258
ATCACTCAA
NM_00524
3
−8.3
mAsdTsmCsdAsmCsd
642



ATTTATGCGG
9.5_2746-


TsmCsdAsmAsdAsmU




C
2765_as


sdTsmUsdAsmUsdGs








mCsdGsmGsdC






259
ACATTAACA
NM_00524
2
−7.7
mAsdCsmAsdTsmUsd
643



ATCACTCAA
9.5_2755-


AsmAsdCsmAsdAsmU




AT
2774_as


sdCsmAsdCsmUsdCs








mAsdAsmAsdT






260
CAACATTAA
NM_00524
2
−10.3
mCsdAsmAsdCsmAsd
644



CAATCACTC
9.5_2757-


TsmUsdAsmAsdCsmA




AA
2776_as


sdAsmUsdCsmAsdCs








mUsdCsmAsdA






261
ACAACATTA
NM_00524
2
−12.1
mAsdCsmAsdAsmCsd
645



ACAATCACT
9.5_2758-


AsmUsdTsmAsdAsmC




CA
2777_as


sdAsmAsdTsmCsdAs








mCsdTsmCsdA






262
GACAACATT
NM_00524
2
−14.3
mGsdAsmCsdAsmAsd
646



AACAATCAC
9.5_2759-


CsmAsdTsmUsdAsmA




TC
2778_as


sdCsmAsdAsmUsdCs








mAsdCsmUsdC






263
AGACAACAT
NM_00524
2
−11.1
mAsdGsmAsdCsmAsd
647



TAACAATCA
9.5_2760-


AsmCsdAsmUsdTsmA




CT
2779_as


sdAsmCsdAsmAsdTs








mCsdAsmCsdT






264
ACCACAGTA
NM_00524
2
−8.9
mAsdCsmCsdAsmCsd
648



TCACAATCA
9.5_2788-


AsmGsdTsmAsdTsmC




AG
2807_as


sdAsmCsdAsmAsdTs








mCsdAsmAsdG






265
GACCACAGT
NM_00524
2
−9.5
mGsdAsmCsdCsmAsd
649



ATCACAATC
9.5_2789-


CsmAsdGsmUsdAsmU




AA
2808_as


sdCsmAsdCsmAsdAs








mUsdCsmAsdA






266
TGACCACAG
NM_00524
2
−6.5
mUsdGsmAsdCsmCsd
650



TATCACAATC
9.5_2790-


AsmCsdAsmGsdTsmA




A
2809_as


sdTsmCsdAsmCsdAsm








AsdTsmCsdA






267
ATGACCACA
NM_00524
2
−6.8
mAsdTsmGsdAsmCsd
651



GTATCACAA
9.5_2791-


CsmAsdCsmAsdGsmU




TC
2810_as


sdAsmUsdCsmAsdCs








mAsdAsmUsdC






268
CATATGACC
NM_00524
2
−10.5
mCsdAsmUsdAsmUsd
652



ACAGTATCA
9.5_2794-


GsmAsdCsmCsdAsmC




CA
2813_as


sdAsmGsdTsmAsdTsm








CsdAsmCsdA






269
GCATATGAC
NM_00524
2
−11.6
mGsdCsmAsdTsmAsd
653



CACAGTATC
9.5_2795-


TsmGsdAsmCsdCsmA




AC
2814_as


sdCsmAsdGsmUsdAs








mUsdCsmAsdC






270
GACAAACAC
NM_00524
2
−10.5
mGsdAsmCsdAsmAsd
654



GGGCATATG
9.5_2806-


AsmCsdAsmCsdGsmG




AC
2825_as


sdGsmCsdAsmUsdAs








mUsdGsmAsdC






271
TGACAAACA
NM_00524
2
−8.8
mUsdGsmAsdCsmAsd
655



CGGGCATAT
9.5_2807-


AsmAsdCsmAsdCsmG




GA
2826_as


sdGsmGsdCsmAsdTs








mAsdTsmGsdA






272
GTTCATAGTA
NM_00524
2
−7.4
mGsdTsmUsdCsmAsd
656



AACATTTTTG
9.5_2831-


TsmAsdGsmUsdAsmA





2850_as


sdAsmCsdAsmUsdTs








mUsdTsmUsdG






273
GTGTTCATAG
NM_00524
2
−8.2
mGsdTsmGsdTsmUsd
657



TAAACATTTT
9.5_2833-


CsmAsdTsmAsdGsmU





2852_as


sdAsmAsdAsmCsdAs








mUsdTsmUsdT






274
TGTGTTCATA
NM_00524
2
−7.6
mUsdGsmUsdGsmUsd
658



GTAAACATTT
9.5_2834-


TsmCsdAsmUsdAsmG





2853_as


sdTsmAsdAsmAsdCs








mAsdTsmUsdT






275
TCTGTGTGTT
NM_00524
2
−11.1
mUsdCsmUsdGsmUsd
659



CATAGTAAA
9.5_2838-


GsmUsdGsmUsdTsmC




C
2857_as


sdAsmUsdAsmGsdTs








mAsdAsmAsdC






276
TTCTGTGTGT
NM_00524
2
−8.5
mUsdTsmCsdTsmGsd
660



TCATAGTAA
9.5_2839-


TsmGsdTsmGsdTsmU




A
2858_as


sdCsmAsdTsmAsdGs








mUsdAsmAsdA






277
TATTTCTGTG
NM_00524
2
−6.6
mUsdAsmUsdTsmUsd
661



TGTTCATAGT
9.5_2842-


CsmUsdGsmUsdGsmU





2861_as


sdGsmUsdTsmCsdAs








mUsdAsmGsdT






278
GATATATAT
NM_00524
2
−12.2
mGsdAsmUsdAsmUsd
662



GAATTTAGC
9.5_2868-


AsmUsdAsmUsdGsm




CT
2887_as


AsdAsmUsdTsmUsdA








smGsdCsmCsdT






279
AGATATATA
NM_00524
2
−7.7
mAsdGsmAsdTsmAsd
663



TGAATTTAGC
9.5_2869-


TsmAsdTsmAsdTsmG




C
2888_as


sdAsmAsdTsmUsdTsm








AsdGsmCsdC






280
AGACAAAAG
NM_00524
2
−9
mAsdGsmAsdCsmAsd
664



TATCAAGAT
9.5_2883-


AsmAsdAsmGsdTsmA




AT
2902_as


sdTsmCsdAsmAsdGs








mAsdTsmAsdT






281
AGTTGATTG
NM_00524
2
−7.2
mAsdGsmUsdTsmGsd
665



GTCTTTAAAA
9.5_2924-


AsmUsdTsmGsdGsmU




A
2943_as


sdCsmUsdTsmUsdAs








mAsdAsmAsdA






282
CCCTATAAGT
NM_00524
2
−6.3
mCsdCsmCsdTsmAsd
666



TGATTGGTCT
9.5_2931-


TsmAsdAsmGsdTsmU





2950_as


sdGsmAsdTsmUsdGs








mGsdTsmCsdT






283
AAAAAGCCT
NM_00524
2
−6.5
mAsdAsmAsdAsmAsd
667



TTGAATTCCC
9.5_2947-


GsmCsdCsmUsdTsmU




T
2966_as


sdGsmAsdAsmUsdTs








mCsdCsmCsdT






284
TAAATTTTAG
NM_00524
2
−11.6
mUsdAsmAsdAsmUsd
668



TTTGGCTGAA
9.5_2965-


TsmUsdTsmAsdGsmU





2984_as


sdTsmUsdGsmGsdCs








mUsdGsmAsdA






285
TTAAATTTTA
NM_00524
2
−12.4
mUsdTsmAsdAsmAsd
669



GTTTGGCTGA
9.5_2966-


TsmUsdTsmUsdAsmG





2985_as


sdTsmUsdTsmGsdGsm








CsdTsmGsdA






286
TTTAAATTTT
NM_00524
2
−11.9
mUsdTsmUsdAsmAsd
670



AGTTTGGCTG
9.5_2967-


AsmUsdTsmUsdTsmA





2986_as


sdGsmUsdTsmUsdGs








mGsdCsmUsdG






287
GTTTAAATTT
NM_00524
2
−10.4
mGsdTsmUsdTsmAsd
671



TAGTTTGGCT
9.5_2968-


AsmAsdTsmUsdTsmU





2987_as


sdAsmGsdTsmUsdTsm








GsdGsmCsdT






288
TTAGAGTCA
NM_00524
2
−10.9
mUsdTsmAsdGsmAsd
672



GTTCAAATTA
9.5_2995-


GsmUsdCsmAsdGsmU




A
3014_as


sdTsmCsdAsmAsdAs








mUsdTsmAsdA






289
TTTAGAGTCA
NM_00524
2
−11.7
mUsdTsmUsdAsmGsd
673



GTTCAAATTA
9.5_2996-


AsmGsdTsmCsdAsmG





3015_as


sdTsmUsdCsmAsdAs








mAsdTsmUsdA






290
TTTTAGAGTC
NM_00524
2
−14.6
mUsdTsmUsdTsmAsd
674



AGTTCAAATT
9.5_2997-


GsmAsdGsmUsdCsmA





3016_as


sdGsmUsdTsmCsdAs








mAsdAsmUsdT






291
TCATTTTTAG
NM_00524
2
−9.8
mUsdCsmAsdTsmUsd
675



AGTCAGTTC
9.5_3001-


TsmUsdTsmAsdGsmA




A
3020_as


sdGsmUsdCsmAsdGs








mUsdTsmCsdA






292
TTCATTTTTA
NM_00524
2
−9.2
mUsdTsmCsdAsmUsd
676



GAGTCAGTT
9.5_3002-


TsmUsdTsmUsdAsmG




C
3021_as


sdAsmGsdTsmCsdAs








mGsdTsmUsdC






293
GTTCACAAA
NM_00524
2
−9
mGsdTsmUsdCsmAsd
677



GGGAAAAAT
9.5_3026-


CsmAsdAsmAsdGsmG




AC
3045_as


sdGsmAsdAsmAsdAs








mAsdTsmAsdC






294
CTGCTCCTTG
NM_00524
2
−6.5
mCsdTsmGsdCsmUsd
678



TAAAATTTGT
9.5_3044-


CsmCsdTsmUsdGsmU





3063_as


sdAsmAsdAsmAsdTs








mUsdTsmGsdT






29.5
GCTGCTCCTT
NM_00524
2
−7.1
mGsdCsmUsdGsmCsd
679



GTAAAATTT
9.5_3045-


TsmCsdCsmUsdTsmG




G
3064_as


sdTsmAsdAsmAsdAs








mUsdTsmUsdG






296
TGTTTATTAA
NM_00524
2
−7.1
mUsdGsmUsdTsmUsd
680



ATAGGCTGC
9.5_3059-


AsmUsdTsmAsdAsmA




T
3078_as


sdTsmAsdGsmGsdCs








mUsdGsmCsdT






297
GTGTTTATTA
NM_00524
2
−7.1
mGsdTsmGsdTsmUsd
681



AATAGGCTG
9.5_3060-


TsmAsdTsmUsdAsmA




C
3079_as


sdAsmUsdAsmGsdGs








mCsdTsmGsdC






298
TAGTGTTTAT
NM_00524
2
−12.4
mUsdAsmGsdTsmGsd
682



TAAATAGGC
9.5_3062-


TsmUsdTsmAsdTsmU




T
3081_as


sdAsmAsdAsmUsdAs








mGsdGsmCsdT






299
CTAGTGTTTA
NM_00524
2
−11.4
mCsdTsmAsdGsmUsd
683



TTAAATAGG
9.5_3063-


GsmUsdTsmUsdAsmU




C
3082_as


sdTsmAsdAsmAsdTsm








AsdGsmGsdC






300
GCTAGTGTTT
NM_00524
2
−11.4
mGsdCsmUsdAsmGsd
684



ATTAAATAG
9.5_3064-


TsmGsdTsmUsdTsmA




G
3083_as


sdTsmUsdAsmAsdAs








mUsdAsmGsdG






301
AAAGCCTAT
NM_00524
2
−11.4
mAsdAsmAsdGsmCsd
685



ACTTTGTTTA
9.5_3085-


CsmUsdAsmUsdAsmC




A
3104_as


sdTsmUsdTsmGsdTsm








UsdTsmAsdA






302
TCAGCTGAA
NM_00524
2
−9.1
mUsdCsmAsdGsmCsd
686



AAGCCTATA
9.5_3093-


TsmGsdAsmAsdAsmA




CT
3112_as


sdGsmCsdCsmUsdAs








mUsdAsmCsdT






303
ATCAGCTGA
NM_00524
2
−9
mAsdTsmCsdAsmGsd
687



AAAGCCTAT
9.5_3094-


CsmUsdGsmAsdAsmA




AC
3113_as


sdAsmGsdCsmCsdTsm








AsdTsmAsdC






304
TATCAGCTG
NM_00524
2
−11.2
mUsdAsmUsdCsmAsd
688



AAAAGCCTA
9.5_3095-


GsmCsdTsmGsdAsmA




TA
3114_as


sdAsmAsdGsmCsdCs








mUsdAsmUsdA






305
GTATCAGCT
NM_00524
2
−11.2
mGsdTsmAsdTsmCsd
689



GAAAAGCCT
9.5_3096-


AsmGsdCsmUsdGsmA




AT
3115_as


sdAsmAsdAsmGsdCs








mCsdTsmAsdT






306
GGTATCAGC
NM_00524
2
−9.3
mGsdGsmUsdAsmUsd
690



TGAAAAGCC
9.5_3097-


CsmAsdGsmCsdTsmG




TA
3116_as


sdAsmAsdAsmAsdGs








mCsdCsmUsdA






307
TGTATATCCA
NM_00524
2
−5.9
mUsdGsmUsdAsmUsd
691



CAGAAACTT
9.5_3119-


AsmUsdCsmCsdAsmC




A
3138_as


sdAsmGsdAsmAsdAs








mCsdTsmUsdA






308
CTTTTTGCTG
NM_00524
2
−9.6
mCsdTsmUsdTsmUsd
692



TATATCCACA
9.5_3127-


TsmGsdCsmUsdGsmU





3146_as


sdAsmUsdAsmUsdCs








mCsdAsmCsdA






309
TCTTTTTGCT
NM_00524
2
−8.6
mUsdCsmUsdTsmUsd
693



GTATATCCAC
9.5_3128-


TsmUsdGsmCsdTsmG





3147_as


sdTsmAsdTsmAsdTsm








CsdCsmAsdC






310
CTCTTTTTGC
NM_00524
2
−8
mCsdTsmCsdTsmUsd
694



TGTATATCCA
9.5_3129-


TsmUsdTsmGsdCsmU





3148_as


sdGsmUsdAsmUsdAs








mUsdCsmCsdA






311
TCTCTTTTTG
NM_00524
2
−11.8
mUsdCsmUsdCsmUsd
695



CTGTATATCC
9.5_3130-


TsmUsdTsmUsdGsmC





3149_as


sdTsmGsdTsmAsdTsm








AsdTsmCsdC






312
ATCTCTTTTT
NM_00524
2
−12.6
mAsdTsmCsdTsmCsd
696



GCTGTATATC
9.5_3131-


TsmUsdTsmUsdTsmG





3150_as


sdCsmUsdGsmUsdAs








mUsdAsmUsdC






313
ATATCTCTTT
NM_00524
2
−15.3
mAsdTsmAsdTsmCsd
697



TTGCTGTATA
9.5_3133-


TsmCsdTsmUsdTsmU





3152_as


sdTsmGsdCsmUsdGs








mUsdAsmUsdA






314
TATATCTCTT
NM_00524
2
−15.3
mUsdAsmUsdAsmUsd
698



TTTGCTGTAT
9.5_3134-


CsmUsdCsmUsdTsmU





3153_as


sdTsmUsdGsmCsdTsm








GsdTsmAsdT






315
TTATATCTCT
NM_00524
2
−15.4
mUsdTsmAsdTsmAsd
699



TTTTGCTGTA
9.5_3135-


TsmCsdTsmCsdTsmUs





3154_as


dTsmUsdTsmGsdCsm








UsdGsmUsdA






316
ATTATATCTC
NM_00524
2
−15.7
mAsdTsmUsdAsmUsd
700



TTTTTGCTGT
9.5_3136-


AsmUsdCsmUsdCsmU





3155_as


sdTsmUsdTsmUsdGsm








CsdTsmGsdT






317
AATTATATCT
NM_00524
2
−13.8
mAsdAsmUsdTsmAsd
701



CTTTTTGCTG
9.5_3137-


TsmAsdTsmCsdTsmCs





3156_as


dTsmUsdTsmUsdTsm








GsdCsmUsdG






318
GGTAAAGAG
NM_00524
2
−7.8
mGsdGsmUsdAsmAsd
702



CTATGCACA
9.5_3163-


AsmGsdAsmGsdCsmU




GA
3182_as


sdAsmUsdGsmCsdAs








mCsdAsmGsdA






319
GGGTAAAGA
NM_00524
3
−9
mGsdGsmGsdTsmAsd
703



GCTATGCAC
9.5_3164-


AsmAsdGsmAsdGsmC




AG
3183_as


sdTsmAsdTsmGsdCsm








AsdCsmAsdG






320
AGGGTAAAG
NM_00524
2
−10.9
mAsdGsmGsdGsmUsd
704



AGCTATGCA
9.5_3165-


AsmAsdAsmGsdAsm




CA
3184_as


GsdCsmUsdAsmUsdG








smCsdAsmCsdA






321
CAGGGTAAA
NM_00524
2
−10.8
mCsdAsmGsdGsmGsd
705



GAGCTATGC
9.5_3166-


TsmAsdAsmAsdGsmA




AC
3185_as


sdGsmCsdTsmAsdTsm








GsdCsmAsdC






322
ACAGGGTAA
NM_00524
2
−10
mAsdCsmAsdGsmGsd
706



AGAGCTATG
9.5_3167-


GsmUsdAsmAsdAsm




CA
3186_as


GsdAsmGsdCsmUsdA








smUsdGsmCsdA






323
AACACAGGG
NM_00524
2
−7.6
mAsdAsmCsdAsmCsd
707



TAAAGAGCT
9.5_3170-


AsmGsdGsmGsdTsmA




AT
3189_as


sdAsmAsdGsmAsdGs








mCsdTsmAsdT






324
GCCAAGCTC
NM_00524
2
−5.9
mGsdCsmCsdAsmAsd
708



TATTAACAAT
9.5_3240-


GsmCsdTsmCsdTsmA




A
3259_as


sdTsmUsdAsmAsdCs








mAsdAsmUsdA






325
TGCCAAGCT
NM_00524
2
−7.4
mUsdGsmCsdCsmAsd
709



CTATTAACA
9.5_3241-


AsmGsdCsmUsdCsmU




AT
3260_as


sdAsmUsdTsmAsdAs








mCsdAsmAsdT






326
TTGCCAAGCT
NM_00524
2
−7.5
mUsdTsmGsdCsmCsd
710



CTATTAACA
9.5_3242-


AsmAsdGsmCsdTsmC




A
3261_as


sdTsmAsdTsmUsdAsm








AsdCsmAsdA






327
TTTGCCAAGC
NM_00524
2
−6.5
mUsdTsmUsdGsmCsd
711



TCTATTAACA
9.5_3243-


CsmAsdAsmGsdCsmU





3262_as


sdCsmUsdAsmUsdTs








mAsdAsmCsdA






328
ATAATTTGCC
NM_00524
2
−9.7
mAsdTsmAsdAsmUsd
712



AAGCTCTATT
9.5_3247-


TsmUsdGsmCsdCsmA





3266_as


sdAsmGsdCsmUsdCs








mUsdAsmUsdT






329
TATAATTTGC
NM_00524
2
−9.7
mUsdAsmUsdAsmAsd
713



CAAGCTCTAT
9.5_3248-


TsmUsdTsmGsdCsmC





3267_as


sdAsmAsdGsmCsdTs








mCsdTsmAsdT






330
TTATAATTTG
NM_00524
2
−9.8
mUsdTsmAsdTsmAsd
714



CCAAGCTCT
9.5_3249-


AsmUsdTsmUsdGsmC




A
3268_as


sdCsmAsdAsmGsdCs








mUsdCsmUsdA






331
ATTTATAATT
NM_00524
2
−7.9
mAsdTsmUsdTsmAsd
715



TGCCAAGCT
9.5_3251-


TsmAsdAsmUsdTsmU




C
3270_as


sdGsmCsdCsmAsdAs








mGsdCsmUsdC






332
TATTTATAAT
NM_00524
2
−5.9
mUsdAsmUsdTsmUsd
716



TTGCCAAGCT
9.5_3252-


AsmUsdAsmAsdTsmU





3271_as


sdTsmGsdCsmCsdAsm








AsdGsmCsdT






333
TTATTTATAA
NM_00524
2
−6.9
mUsdTsmAsdTsmUsd
717



TTTGCCAAGC
9.5_3253-


TsmAsdTsmAsdAsmU





3272_as


sdTsmUsdGsmCsdCsm








AsdAsmGsdC






334
ACTTCTATCT
NM_00524
2
−7.7
mAsdCsmUsdTsmCsd
718



AACCATATA
9.5_3279-


TsmAsdTsmCsdTsmA




C
3298_as


sdAsmCsdCsmAsdTsm








AsdTsmAsdC






335
GTCACTTCTA
NM_00524
2
−10.7
mGsdTsmCsdAsmCsd
719



TCTAACCATA
9.5_3282-


TsmUsdCsmUsdAsmU





3301_as


sdCsmUsdAsmAsdCs








mCsdAsmUsdA






336
AGTCACTTCT
NM_00524
2
−12.6
mAsdGsmUsdCsmAsd
720



ATCTAACCAT
9.5_3283-


CsmUsdTsmCsdTsmA





3302_as


sdTsmCsdTsmAsdAsm








CsdCsmAsdT






337
TAGTCACTTC
NM_00524
2
−10
mUsdAsmGsdTsmCsd
721



TATCTAACCA
9.5_3284-


AsmCsdTsmUsdCsmU





3303_as


sdAsmUsdCsmUsdAs








mAsdCsmCsdA






338
ATAGTCACTT
NM_00524
2
−11.6
mAsdTsmAsdGsmUsd
722



CTATCTAACC
9.5_3285-


CsmAsdCsmUsdTsmC





3304_as


sdTsmAsdTsmCsdTsm








AsdAsmCsdC






339
TATAGTCACT
NM_00524
2
−9.3
mUsdAsmUsdAsmGsd
723



TCTATCTAAC
9.5_3286-


TsmCsdAsmCsdTsmU





3305_as


sdCsmUsdAsmUsdCs








mUsdAsmAsdC






340
TTATAGTCAC
NM_00524
2
−7.6
mUsdTsmAsdTsmAsd
724



TTCTATCTAA
9.5_3287-


GsmUsdCsmAsdCsmU





3306_as


sdTsmCsdTsmAsdTsm








CsdTsmAsdA






341
ATTATAGTCA
NM_00524
2
−7.5
mAsdTsmUsdAsmUsd
725



CTTCTATCTA
9.5_3288-


AsmGsdTsmCsdAsmC





3307_as


sdTsmUsdCsmUsdAs








mUsdCsmUsdA






342
CATTATAGTC
NM_00524
2
−6.7
mCsdAsmUsdTsmAsd
726



ACTTCTATCT
9.5_3289-


TsmAsdGsmUsdCsmA





3308_as


sdCsmUsdTsmCsdTsm








AsdTsmCsdT






343
GCATTATAGT
NM_00524
2
−9.6
mGsdCsmAsdTsmUsd
727



CACTTCTATC
9.5_3290-


AsmUsdAsmGsdTsmC





3309_as


sdAsmCsdTsmUsdCsm








UsdAsmUsdC






344
TGCATTATAG
NM_00524
2
−9.2
mUsdGsmCsdAsmUsd
728



TCACTTCTAT
9.5_3291-


TsmAsdTsmAsdGsmU





3310_as


sdCsmAsdCsmUsdTsm








CsdTsmAsdT






345
GTGCATTATA
NM_00524
2
−6.4
mGsdTsmGsdCsmAsd
729



GTCACTTCTA
9.5_3292-


TsmUsdAsmUsdAsmG





3311_as


sdTsmCsdAsmCsdTsm








UsdCsmUsdA






346
GGGCTCTGT
NM_00524
2
−6
mGsdGsmGsdCsmUsd
730



GTGTCTATAT
9.5_3324-


CsmUsdGsmUsdGsmU




A
3343_as


sdGsmUsdCsmUsdAs








mUsdAsmUsdA






347
AGGGCTCTG
NM_00524
2
−7.6
mAsdGsmGsdGsmCsd
731



TGTGTCTATA
9.5_3325-


TsmCsdTsmGsdTsmG




T
3344_as


sdTsmGsdTsmCsdTsm








AsdTsmAsdT






348
AAGGGCTCT
NM_00524
2
−8
mAsdAsmGsdGsmGsd
732



GTGTGTCTAT
9.5_3326-


CsmUsdCsmUsdGsmU




A
3345_as


sdGsmUsdGsmUsdCs








mUsdAsmUsdA






349
GAAGGGCTC
NM_00524
2
−10.6
mGsdAsmAsdGsmGsd
733



TGTGTGTCTA
9.5_3327-


GsmCsdTsmCsdTsmG




T
3346_as


sdTsmGsdTsmGsdTsm








CsdTsmAsdT






350
TGAAGGGCT
NM_00524
2
−11.4
mUsdGsmAsdAsmGsd
734



CTGTGTGTCT
9.5_3328-


GsmGsdCsmUsdCsmU




A
3347_as


sdGsmUsdGsmUsdGs








mUsdCsmUsdA






351
ACTGAAGGG
NM_00524
2
−14.8
mAsdCsmUsdGsmAsd
735



CTCTGTGTGT
9.5_3330-


AsmGsdGsmGsdCsmU




C
3349_as


sdCsmUsdGsmUsdGs








mUsdGsmUsdC






352
GAACTGAAG
NM_00524
2
−9.3
mGsdAsmAsdCsmUsd
736



GGCTCTGTGT
9.5_3332-


GsmAsdAsmGsdGsm




G
3351_as


GsdCsmUsdCsmUsdG








smUsdGsmUsdG






353
TGAACTGAA
NM_00524
2
−13.1
mUsdGsmAsdAsmCsd
737



GGGCTCTGT
9.5_3333-


TsmGsdAsmAsdGsmG




GT
3352_as


sdGsmCsdTsmCsdTsm








GsdTsmGsdT






354
CTGAACTGA
NM_00524
2
−10
mCsdTsmGsdAsmAsd
738



AGGGCTCTG
9.5_3334-


CsmUsdGsmAsdAsmG




TG
3353_as


sdGsmGsdCsmUsdCs








mUsdGsmUsdG






355
CCTGAACTG
NM_00524
2
−12.5
mCsdCsmUsdGsmAsd
739



AAGGGCTCT
9.5_3335-


AsmCsdTsmGsdAsmA




GT
3354_as


sdGsmGsdGsmCsdTs








mCsdTsmGsdT






356
AAATTGTAC
NM_00524
2
−6.4
mAsdAsmAsdTsmUsd
740



CTGAACTGA
9.5_3343-


GsmUsdAsmCsdCsmU




AG
3362_as


sdGsmAsdAsmCsdTs








mGsdAsmAsdG






357
CAAATTGTA
NM_00524
2
−7.1
mCsdAsmAsdAsmUsd
741



CCTGAACTG
9.5_3344-


TsmGsdTsmAsdCsmC




AA
3363_as


sdTsmGsdAsmAsdCs








mUsdGsmAsdA






358
GCAAATTGT
NM_00524
2
−9.6
mGsdCsmAsdAsmAsd
742



ACCTGAACT
9.5_3345-


TsmUsdGsmUsdAsmC




GA
3364_as


sdCsmUsdGsmAsdAs








mCsdTsmGsdA






359
CGCAAATTG
NM_00524
3
−8.1
mCsdGsmCsdAsmAsd
743



TACCTGAACT
9.5_3346-


AsmUsdTsmGsdTsmA




G
3365_as


sdCsmCsdTsmGsdAsm








AsdCsmUsdG






360
GCGCAAATT
NM_00524
3
−6.6
mGsdCsmGsdCsmAsd
744



GTACCTGAA
9.5_3347-


AsmAsdTsmUsdGsmU




CT
3366_as


sdAsmCsdCsmUsdGs








mAsdAsmCsdT






361
ATAAATGCT
NM_00524
2
−6.4
mAsdTsmAsdAsmAsd
745



GACTTAGAA
9.5_3410-


TsmGsdCsmUsdGsmA




AG
3429_as


sdCsmUsdTsmAsdGs








mAsdAsmAsdG






362
AAATAAATG
NM_00524
2
−6.3
mAsdAsmAsdTsmAsd
746



CTGACTTAG
9.5_3412-


AsmAsdTsmGsdCsmU




AA
3431_as


sdGsmAsdCsmUsdTs








mAsdGsmAsdA






363
AAAATAAAT
NM_00524
2
−6.3
mAsdAsmAsdAsmUsd
747



GCTGACTTA
9.5_3413-


AsmAsdAsmUsdGsmC




GA
3432_as


sdTsmGsdAsmCsdTsm








UsdAsmGsdA






364
GTGGGTAAA
NM_00524
2
−6.5
mGsdTsmGsdGsmGsd
748



CAGCCACAA
9.5_3430-


TsmAsdAsmAsdCsmA




AA
3449_as


sdGsmCsdCsmAsdCs








mAsdAsmAsdA






365
TGTGGGTAA
NM_00524
2
−7.5
mUsdGsmUsdGsmGsd
749



ACAGCCACA
9.5_3431-


GsmUsdAsmAsdAsmC




AA
3450_as


sdAsmGsdCsmCsdAs








mCsdAsmAsdA






366
ATTGTGGGT
NM_00524
2
−9.7
mAsdTsmUsdGsmUsd
750



AAACAGCCA
9.5_3433-


GsmGsdGsmUsdAsm




CA
3452_as


AsdAsmCsdAsmGsdC








smCsdAsmCsdA






367
CATTGTGGGT
NM_00524
2
−7.3
mCsdAsmUsdTsmGsd
751



AAACAGCCA
9.5_3434-


TsmGsdGsmGsdTsmA




C
3453_as


sdAsmAsdCsmAsdGs








mCsdCsmAsdC






368
TCATTGTGGG
NM_00524
2
−8
mUsdCsmAsdTsmUsd
752



TAAACAGCC
9.5_3435-


GsmUsdGsmGsdGsm




A
3454_as


UsdAsmAsdAsmCsdA








smGsdCsmCsdA






369
TTCATTGTGG
NM_00524
2
−13.5
mUsdTsmCsdAsmUsd
753



GTAAACAGC
9.5_3436-


TsmGsdTsmGsdGsmG




C
3455_as


sdTsmAsdAsmAsdCs








mAsdGsmCsdC






370
TTTCATTGTG
NM_00524
2
−12.1
mUsdTsmUsdCsmAsd
754



GGTAAACAG
9.5_3437-


TsmUsdGsmUsdGsmG




C
3456_as


sdGsmUsdAsmAsdAs








mCsdAsmGsdC






371
CTTTCATTGT
NM_00524
2
−11.2
mCsdTsmUsdTsmCsd
755



GGGTAAACA
9.5_3438-


AsmUsdTsmGsdTsmG




G
3457_as


sdGsmGsdTsmAsdAs








mAsdCsmAsdG






372
TCTTTCATTG
NM_00524
2
−11.6
mUsdCsmUsdTsmUsd
756



TGGGTAAAC
9.5_3439-


CsmAsdTsmUsdGsmU




A
3458_as


sdGsmGsdGsmUsdAs








mAsdAsmCsdA






373
CTCTTTCATT
NM_00524
2
−11.8
mCsdTsmCsdTsmUsd
757



GTGGGTAAA
9.5_3440-


TsmCsdAsmUsdTsmG




C
3459_as


sdTsmGsdGsmGsdTsm








AsdAsmAsdC






374
ACTCTTTCAT
NM_00524
2
−11.8
mAsdCsmUsdCsmUsd
758



TGTGGGTAA
9.5_3441-


TsmUsdCsmAsdTsmU




A
3460_as


sdGsmUsdGsmGsdGs








mUsdAsmAsdA






375
AACTCTTTCA
NM_00524
2
−11.8
mAsdAsmCsdTsmCsd
759



TTGTGGGTA
9.5_3442-


TsmUsdTsmCsdAsmU




A
3461_as


sdTsmGsdTsmGsdGsm








GsdTsmAsdA






376
GAACTCTTTC
NM_00524
2
−12.5
mGsdAsmAsdCsmUsd
760



ATTGTGGGT
9.5_3443-


CsmUsdTsmUsdCsmA




A
3462_as


sdTsmUsdGsmUsdGs








mGsdGsmUsdA






377
AGAACTCTTT
NM_00524
2
−12.8
mAsdGsmAsdAsmCsd
761



CATTGTGGGT
9.5_3444-


TsmCsdTsmUsdTsmCs





3463_as


dAsmUsdTsmGsdTsm








GsdGsmGsdT






378
TAGAACTCTT
NM_00524
2
−11
mUsdAsmGsdAsmAsd
762



TCATTGTGGG
9.5_3445-


CsmUsdCsmUsdTsmU





3464_as


sdCsmAsdTsmUsdGs








mUsdGsmGsdG






379
TTAGAACTCT
NM_00524
2
−8.4
mUsdTsmAsdGsmAsd
763



TTCATTGTGG
9.5_3446-


AsmCsdTsmCsdTsmU





3465_as


sdTsmCsdAsmUsdTsm








GsdTsmGsdG






380
CTTTATTAGA
NM_00524
2
−6.6
mCsdTsmUsdTsmAsd
764



ACTCTTTCAT
9.5_3451-


TsmUsdAsmGsdAsmA





3470_as


sdCsmUsdCsmUsdTsm








UsdCsmAsdT






381
ACATCTTTAT
NM_00524
2
−10.7
mAsdCsmAsdTsmCsd
765



TAGAACTCTT
9.5_3455-


TsmUsdTsmAsdTsmU





3474_as


sdAsmGsdAsmAsdCs








mUsdCsmUsdT






382
GCACATCTTT
NM_00524
2
−6.3
mGsdCsmAsdCsmAsd
766



ATTAGAACT
9.5_3457-


TsmCsdTsmUsdTsmA




C
3476_as


sdTsmUsdAsmGsdAs








mAsdCsmUsdC






383
CAGCACATC
NM_00524
2
−6.5
mCsdAsmGsdCsmAsd
767



TTTATTAGAA
9.5_3459-


CsmAsdTsmCsdTsmU




C
3478_as


sdTsmAsdTsmUsdAsm








GsdAsmAsdC






384
TCAGCACAT
NM_00524
2
−6.7
mUsdCsmAsdGsmCsd
768



CTTTATTAGA
9.5_3460-


AsmCsdAsmUsdCsmU




A
3479_as


sdTsmUsdAsmUsdTsm








AsdGsmAsdA









Example 2: Cellular Modulation of FOXG1 Expression by ASOs

The designed antisense oligonucleotides (ASOs) targeting the 5′ and 3′ UTR region of a FOXG1 mRNA were tested for the ability to modulate (e.g. increase) FOXG1 expression in cells. In brief, cells were transfected with The ASOs of Table 1 ad Table 2, and the changes in FOXG1 mRNA were measured.


Cells:


HEK293 cells were obtained from ATCC (ATCC in partnership with LGC Standards, Wesel, Germany, cat. #ATCC-CRL-1573) and cultured in EMEM (#30-2003, ATCC in partnership with LGC Standards, Wesel, Germany), supplemented to contain 10% fetal calf serum (1248D, Biochrom GmbH, Berlin, Germany), and 100 U/ml Penicillin/100n/m1 Streptomycin (A2213, Biochrom GmbH, Berlin, Germany) at 37° C. in an atmosphere with 5% CO2 in a humidified incubator. For transfection of HEK293 cells with ASOs, cells were seeded at a density of 15,000 cells/well into 96-well tissue culture plates (#655180, GBO, Germany).


Transfection of ASOs:


In HEK293 cells, transfection of ASOs was carried out with Lipofectamine2000 (Invitrogen/Life Technologies, Karlsruhe, Germany) according to manufacturer's instructions for reverse transfection with 0.5 μL Lipofectamine2000 per well.


The single dose screen was performed with ASOs in quadruplicates at 50 nM, with two ASOs targeting AHSA1 (one 2′-O-methoxyethyl (MOE) and one 2′-O-methyl (oMe) ASO) and a siRNA targeting RLuc as unspecific controls and a mock transfection. After 24h of incubation with ASOs, medium was removed and cells were lysed in 150111 Medium-Lysis Mixture (1 volume lysis mixture, 2 volumes cell culture medium) and then incubated at 53° C. for 30 minutes.


The two Ahsal-ASOs (one 2′-oMe-modified and one 2′-O-methoxyethyl (MOE MOE)-modified) served at the same time as unspecific controls for respective target mRNA expression and as a positive control to analyze transfection efficiency with regards to Ahsal mRNA level. By hybridization with an Ahsal probe set, the mock transfected wells served as controls for Ahsal mRNA level. Transfection efficiency for each 96-well plate and both doses in the dual dose screen were calculated by relating Ahsal-level with Ahsal-ASO (normalized to GapDH) to Ahsal-level obtained with mock controls.


Detection of FOXG1 mRNA:


QuantiGene detection was used to determine FOXG1 mRNA expression in cells lysates. In short, the QuantiGene assay directly measures target RNAs captured through probe hybridization and quantified through branched DNA technology that amplifies the signal. The signal is read using a Luminex or a luminometer for single targets. The assay measures RNA at the sample source, the assay avoids biases and variability inherent to extraction techniques and enzymatic manipulations. In addition, this direct measurement helps overcome issues with transcript degradation typically found in samples such as FFPE.


For the detection of FOXG1 mRNA, a Quantigene-Singleplex assay (1.0 for GapDH and 2.0 for FoxG1) was performed according to manufacturer's instructions (ThermoFisher, Germany). Luminescence was read using 1420 Luminescence Counter (WALLAC VICTOR Light, Perkin Elmer, Rodgau-Jtigesheim, Germany) following 30 minutes incubation at RT in the dark. The probe sets used for FOXG1 mRNA detection are set forth in Table 3 (Human FoxG1 QG2.0 probe set (Accession #NM_005249): Oligosequences “CEs” and “LEs” are depicted without the proprietary parts of their sequences. Cross reactivity with the cyno sequence was obtained by adding additional probes). Control GapDH probe sets are set forth in Table 5 (Human GapDH QG1.0 probe set (Accession #NM_002046): Oligosequences “CEs” and “LEs” are depicted without the proprietary parts of their sequences.).









TABLE 3







Human FoxG1 QG2.0 probe set (Accession #NM_005249)









Oligo name
sequence 5′-3′
accession#, position & function





QG2_hsFoxG1_1
ggccagcttggcccg
NM 005249.1334.1348.LE





QG2_hsFoxG1 2
gcgcaccgcgcttgaa
NM_005249.1349.1364.LE





QG2_hsFoxG1 3
gccggtggaggtgaggc
NM_005249.1365.1381.CE





QG2_hsFoxG1_4
cgcggtccatgaaggtgag
NM_005249.1382.1400.LE





QG2 hsFoxG1 5
gccagtagagggagccgg
NM_005249.1401.1418.LE





QG2_hsFoxG1_6
gacaggaagggcgacatgg
NM_005249.1419.1437.BL





QG2 hsFoxG1 7
gcgggggtggtgcagg
NM_005249.1438.1453.BL





QG2_hsFoxG1_8
tgtaactcaaagtgctgctggc
NM_005249.1454.1475.CE





QG2_hsFoxG1_9
gccgacgtggtgccgt
NM_005249.1476.1491.LE





QG2_hsFoxG1_10
atggggtggctggggtag
NM_005249.1492.1509.LE





QG2_hsFoxG1_11
tcaacacggagctgtagggc
NM_005249.1510.1529.CE





QG2 hsFoxG1 12
gttgcccagcgagttctgag
NM_005249.1530.1549.LE





QG2_hsFoxG1_13
gcggtggagaaggagtggtt
NM_005249.1550.1569.LE





QG2 hsFoxG1 14
ccacgctcaggccgttg
NM_005249.1570.1586.BL





QG2_hsFoxG1_15
cccgttgaccagccggt
NM_005249.1587.1603.CE





QG2_hsFoxG1_16
cgtggcgtacgggatctc
NM_005249.1604.1621.LE





QG2_hsFoxG1_17
gcggccgtgaggtggtg
NM_005249.1622.1638.LE





QG2_hsFoxG1 18
gaggcggctagcgcg
NM_005249.1639.1653.CE





QG2_hsFoxG1_19
caggccgcagggcacc
NM_005249.1654.1669.LE





QG2_hsFoxG1 20
ccagagcagggcaccga
NM_005249.1670.1686.LE





QG2_hsFoxG1 21
caggggttgagggagtaggtc
NM_005249.1687.1707.CE





QG2_hsFoxG1 22
gcgagcaggttgacggag
NM_005249.1708.1725.LE





QG2_hsFoxG1 23
gaaaaagtaactggtctggccc
NM_005249.1726.1747.LE





QG2_hsFoxG1_24
ggtgcgggacgtgggg
NM_005249.1748.1763.CE





QG2_hsFoxG1 25
tgctctgcgaagtcattgacg
NM_005249.1764.1784.LE





QG2_hsFoxG1 26
ggcgctcatggacgtgc
NM_005249.1785.1801.LE





QG2_hsFoxG1 27
aggaggacgcggccct
NM_005249.1802.1817.CE
















TABLE 4







Human GapDH QG1.0 probe set (Accession #NM_002046)









Oligo name
sequence 5′-3′
accession#, position & function





QG1_hsGAP_1
gaatttgccatgggtggaat
NM_002046.252.271.CE





QG1_hsGAP_2
ggagggatctcgctcctgga
NM_002046.333.352.CE





QG1_hsGAP 3
ccccagccttctccatggt
NM_002046.413.431.CE





QG1_hsGAP 4
gctcccccctgcaaatgag
NM_002046.432.450.CE





QG1_hsGAP 5
agccttgacggtgccatg
NM_002046.272.289.LE





QG1 hsGAP 6
gatgacaagcttcccgttctc
NM_002046.290.310.LE





QG1_hsGAP 7
agatggtgatgggatttccatt
NM_002046.311.332.LE





QG1_hsGAP_8
gcatcgccccacttgatttt
NM_002046.353.372.LE





QG1_hsGAP_9
cacgacgtactcagcgcca
NM_002046.373.391.LE





QG1_hsGAP_10
ggcagagatgatgacccttttg
NM_002046.451.472.LE





QG1_hsGAP_11
ggtgaagacgccagtggactc
NM_002046.392.412.BL









Modulation of FOXG1 Expression by ASOs:



FIG. 2 shows FOXG1 mRNA expression data relative to mock transfection control. Each symbol (dot) indicates mean and standard error (bars). FoxG1 level as determined by linear model analysis. Oligos arranged in order of start position in FoxG1 mRNA (RefSeq NM_005249.5). Vertical dashed line indicates demarcation between 5′-UTR and 3′-UTR targeting oligos (left and right, respectively). The green line indicates 125% expression. Clusters 1 and 2, are indicated by purple boxes. The clusters are defined by 2 or more oligos sharing coordinate space and upregulating FoxG1>125%. For each well, the target mRNA level was normalized to the respective GAPDH mRNA level. Table 5 shows select sequences associated with the identified clusters. The activity of a given ASO was expressed as percent mRNA concentration of the respective target (normalized to GAPDH mRNA) in treated cells, relative to the target mRNA concentration (normalized to GAPDH mRNA) averaged across control wells (set as 100% target expression).









TABLE 5







ASO-mediated modulation of FOXG1 expression in cells














Mean % FoxG1



Oligo
Start
End
relative to Mock
Cluster














NM_005249.5_2061-2080_as
2061
2080
145.58364
1


(SEQ ID NO: 100)


NM_005249.5_2064-2083_as
2064
2083
134.88537
1


(SEQ ID NO: 103)


NM_005249.5_2965-2984_as
2965
2984
126.46911
2


(SEQ ID NO: 284)


NM_005249.5_2967-2986_as
2967
2986
139.66475
2


(SEQ ID NO: 286)


NM_005249.5_2968-2987_as
2968
2987
135.56079
2


(SEQ ID NO: 287)


NM_005249.5_2995-3014_as
2995
3014
129.12053
2


(SEQ ID NO: 288)


NM_005249.5_2996-3015_as
2996
3015
136.41197
2


(SEQ ID NO: 289)









Example 3: Cellular Modulation of FOXG1 Expression by Select ASOs in HEK293 Cells

The designed antisense oligonucleotides (ASOs) targeting a FOXG1 mRNA were further tested for the ability to modulate (e.g. increase) FOXG1 expression in cells. In brief, cells were transfected with The ASOs of Table 6, and the changes in FOXG1 mRNA were measured.


Transfection of ASOs and FOXG1 Quantification:


In HEK293 cells, transfection was performed with ASOs at concentrations of 50 nM and 10 nM in replicate. After 24h of incubation with ASOs, medium was removed, the cells were lysed, and QuantiGene detection was used to determine FOXG1 mRNA expression in cells lysates.


Modulation of FOXG1 Expression by ASOs:



FIG. 3 shows FOXG1 mRNA expression modulation of selected 2′-O-methoxyethyl (MOE) chemistry oligos in HEK293, relative to mean of mock transfection control. Each bar indicates the mean and standard error FOXG1 level. ASOs are arranged by and listed in order of start position in FOXG1 mRNA (RefSeq NM_005249.5). The green horizontal line indicates 125% expression. Clusters 1 and 2 also noted. Table 6 shows the ASO coverage of the FOXG1 mRNA and data associated with the modulation of FOXG1 expression.









TABLE 6







ASO-mediated up-regulation of FOXG1 mRNA in cells










Oligo (Position

Mean



in FOXG1 mRNA)
Dose
Expression
SEM













NM_005249.5_2061-2080
50 nM
189.7648
7.739995


NM_005249.5_2062-2081
50 nM
192.3423
10.95742


NM_005249.5_2063-2082
50 nM
164.8299
7.865033


NM_005249.5_2064-2083
50 nM
127.9935
4.398258


NM_005249.5_2065-2084
50 nM
117.7618
3.856764


NM_005249.5_2961-2980
50 nM
112.9502
2.841189


NM_005249.5_2962-2981
50 nM
114.7827
4.184544


NM_005249.5_2963-2982
50 nM
109.707
0.913357


NM_005249.5_2964-2983
50 nM
114.5229
2.913248


NM_005249.5_2965-2984
50 nM
131.6638
5.676781


NM_005249.5_2966-2985
50 nM
129.4804
1.851186


NM_005249.5_2967-2986
50 nM
128.9098
2.447689


NM_005249.5_2968-2987
50 nM
107.1351
1.832585


NM_005249.5_2969-2988
50 nM
94.31892
1.188665


NM_005249.5_2970-2989
50 nM
123.675
1.774876


NM_005249.5_2971-2990
50 nM
92.11175
1.043745


NM_005249.5_2973-2992
50 nM
85.85752
3.003942


NM_005249.5_2976-2995
50 nM
76.77638
1.550449


NM_005249.5_2977-2996
50 nM
84.87921
1.6896


NM_005249.5_2978-2997
50 nM
102.624
1.407233


NM_005249.5_2983-3002
50 nM
109.6413
1.645209


NM_005249.5_2984-3003
50 nM
108.0409
2.905723


NM_005249.5_2985-3004
50 nM
104.6014
3.465679


NM_005249.5_2986-3005
50 nM
83.09921
1.444432


NM_005249.5_2987-3006
50 nM
77.87864
2.458964


NM_005249.5_2990-3009
50 nM
91.60617
3.409702


NM_005249.5_2991-3010
50 nM
119.3121
3.504208


NM_005249.5_2992-3011
50 nM
106.3858
4.279597


NM_005249.5_2993-3012
50 nM
110.7718
4.264335


NM_005249.5_2994-3013
50 nM
125.111
3.311955


NM_005249.5_2995-3014
50 nM
123.881
5.910818


NM_005249.5_2996-3015
50 nM
125.3415
5.550329


NM_005249.5_2997-3016
50 nM
119.9982
2.415439


NM_005249.5_2998-3017
50 nM
119.8153
2.011818


NM_005249.5_2999-3018
50 nM
100.3009
2.463369


NM_005249.5_3000-3019
50 nM
110.0815
3.525977


NM_005249.5_2061-2080
10 nM
140.8695
5.409641


NM_005249.5_2062-2081
10 nM
148.9523
4.47351


NM_005249.5_2063-2082
10 nM
149.4905
2.028402


NM_005249.5_2064-2083
10 nM
135.3995
6.766115


NM_005249.5_2065-2084
10 nM
128.6393
3.486294


NM_005249.5_2961-2980
10 nM
128.9611
4.7843


NM_005249.5_2962-2981
10 nM
134.9864
5.806415


NM_005249.5_2963-2982
10 nM
140.5912
4.537928


NM_005249.5_2964-2983
10 nM
118.3183
5.061172


NM_005249.5_2965-2984
10 nM
124.083
9.098639


NM_005249.5_2966-2985
10 nM
113.5794
1.977667


NM_005249.5_2967-2986
10 nM
108.0511
0.430458


NM_005249.5_2968-2987
10 nM
114.3724
9.577348


NM_005249.5_2969-2988
10 nM
108.5649
3.977983


NM_005249.5_2970-2989
10 nM
108.5442
3.768629


NM_005249.5_2971-2990
10 nM
104.7672
2.365784


NM_005249.5_2973-2992
10 nM
108.0177
5.491231


NM_005249.5_2976-2995
10 nM
114.5418
7.586278


NM_005249.5_2977-2996
10 nM
132.8276
2.279475


NM_005249.5_2978-2997
10 nM
138.4885
6.397771


NM_005249.5_2983-3002
10 nM
128.7813
2.926409


NM_005249.5_2984-3003
10 nM
129.6681
4.946237


NM_005249.5_2985-3004
10 nM
124.5868
3.105648


NM_005249.5_2986-3005
10 nM
118.2728
4.379385


NM_005249.5_2987-3006
10 nM
125.4329
3.341276


NM_005249.5_2990-3009
10 nM
122.72
3.189793


NM_005249.5_2991-3010
10 nM
126.7657
2.150985


NM_005249.5_2992-3011
10 nM
113.4971
3.562776


NM_005249.5_2993-3012
10 nM
121.0352
3.209476


NM_005249.5_2994-3013
10 nM
123.4705
3.868376


NM_005249.5_2995-3014
10 nM
112.2469
4.423879


NM_005249.5_2996-3015
10 nM
113.204
0.847541


NM_005249.5_2997-3016
10 nM
111.7264
3.5779


NM_005249.5_2998-3017
10 nM
108.964
2.369043


NM_005249.5_2999-3018
10 nM
115.8594
2.530501


NM_005249.5_3000-3019
10 nM
119.797
4.63932









Example 4: Cellular Modulation of FOXG1 Expression by Select ASOs in CFF-STTG1 and SW1783 Cells

The designed antisense oligonucleotides (ASOs) targeting a FOXG1 mRNA were tested for the ability to modulate (e.g. increase) FOXG1 expression in brain tissue-derived cells. In brief, cells were transfected with to ASOs of Table 7, and the changes in FOXG1 mRNA were measured.


Transfection of ASOs and FOXG1 Quantification:


In CFF-STTG1 and SW1783 cells, transfection was performed with ASOs at concentrations of 50 nM and 10 nM, in replicate. After 24h of incubation with ASOs, medium was removed, the cells were lysed, and QuantiGene detection was used to determine FOXG1 mRNA expression in cells lysates.


Modulation of FOXG1 Expression by ASOs:



FIG. 4A shows FOXG1 mRNA expression modulation of selected 2′-O-methoxyethyl (MOE) chemistry oligos in CFF-STTG1 cells, relative to mean of mock transfection and nonspecific oligo controls. FIG. 4B shows FOXG1 mRNA expression modulation of selected oligos in SW1783 cells, relative to mean of mock transfection and nonspecific oligo controls. For both FIG. 4A and FIG. 4B, each bar indicates mean and standard error FOXG1 level and ASOs are arranged by and listed in order of start position in FOXG1 mRNA (RefSeq NM_005249.5). The green horizontal line indicates 125% expression and clusters 1-2 are noted. Table 7 shows ASO coverage of the FOXG1 mRNA and data associated with the modulation of FOXG1 expression in CFF-STTG1 and SW1783 cell lines.









TABLE 7







ASO-mediated upregulation of FOXG1 mRNA in CFF-STTG1 and SW1783 cells











Oligo


Mean



(Position in FoxG1 mRNA)
Cell Line
Dose
Expression
SEM














NM_005249.5_2061-2080_as
CFF-STTG1
50 nM
2.09060354
0.0524632


NM_005249.5_2064-2083_as
CFF-STTG1
50 nM
1.78106746
0.02497863


NM_005249.5_2965-2984_as
CFF-STTG1
50 nM
1.40656881
0.06326815


NM_005249.5_2967-2986_as
CFF-STTG1
50 nM
1.14106306
0.06401273


NM_005249.5_2968-2987_as
CFF-STTG1
50 nM
1.01822144
0.05812383


NM_005249.5_2995-3014_as
CFF-STTG1
50 nM
1.0966339
0.00706128


NM_005249.5_2996-3015_as
CFF-STTG1
50 nM
1.17138666
0.04592333


NM_005249.5_2061-2080_as
CFF-STTG1
10 nM
1.11463161
0.01828397


NM_005249.5_2064-2083_as
CFF-STTG1
10 nM
1.08309632
0.04509828


NM_005249.5_2965-2984_as
CFF-STTG1
10 nM
1.05531127
0.02590015


NM_005249.5_2967-2986_as
CFF-STTG1
10 nM
1.11894287
0.03515521


NM_005249.5_2968-2987_as
CFF-STTG1
10 nM
1.11193636
0.02863519


NM_005249.5_2995-3014_as
CFF-STTG1
10 nM
1.14476513
0.0331245


NM_005249.5_2996-3015_as
CFF-STTG1
10 nM
1.17782235
0.00312998


NM_005249.5_2061-2080_as
SW1783
50 nM
1.41432605
0.02330619


NM_005249.5_2064-2083_as
SW1783
50 nM
1.37415916
0.01947226


NM_005249.5_2965-2984_as
SW1783
50 nM
1.43663656
0.03060538


NM_005249.5_2967-2986_as
SW1783
50 nM
1.34452967
0.02806401


NM_005249.5_2968-2987_as
SW1783
50 nM
1.35678534
0.0400883


NM_005249.5_2995-3014_as
SW1783
50 nM
1.23298541
0.04153227


NM_005249.5_2996-3015_as
SW1783
50 nM
1.46154338
0.02879713


NM_005249.5_2061-2080_as
SW1783
10 nM
1.29423388
0.04532559


NM_005249.5_2064-2083_as
SW1783
10 nM
1.31686659
0.01826147


NM_005249.5_2965-2984_as
SW1783
10 nM
1.15913468
0.04184637


NM_005249.5_2967-2986_as
SW1783
10 nM
1.17039018
0.05614856


NM_005249.5_2968-2987_as
SW1783
10 nM
1.17738434
0.01821765


NM_005249.5_2995-3014_as
SW1783
10 nM
1.18240062
0.01173471


NM_005249.5_2996-3015_as
SW1783
10 nM
1.195674
0.02501848









While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the present disclosure. It should be understood that various alternatives to the embodiments of the present disclosure described herein may be employed in practicing the present disclosure. It is intended that the following claims define the scope of the present disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.












SEQUENCES








SEQ ID NO
SEQUENCE











1
AGCGATCGAGGCGGCTATAG





2
CAGCGATCGAGGCGGCTATA





3
ACAGCGATCGAGGCGGCTAT





4
GACAGCGATCGAGGCGGCTA





5
AGACAGCGATCGAGGCGGCT





6
GCAGCAGTCACAGCAGCAGC





7
CGCAGCAGCAGTCACAGCAG





8
TCGCAGCAGCAGTCACAGCA





9
CTCGCAGCAGCAGTCACAGC





10
TCTCGCAGCAGCAGTCACAG





11
CTCTCGCAGCAGCAGTCACA





12
CCTCTCGCAGCAGCAGTCAC





13
TCCTCTCGCAGCAGCAGTCA





14
CTCCTCTCGCAGCAGCAGTC





15
CCTCCTCTCGCAGCAGCAGT





16
TCCTCCTCTCGCAGCAGCAG





17
CTCCTCCTCTCGCAGCAGCA





18
TCCTCCTCCTCTCGCAGCAG





19
CTCCTCCTCCTCTCGCAGCA





20
TCCTCCTCCTCCTCTCGCAG





21
CTCCTCCTCCTCCTCTCGCA





22
GCTGCTTCCTCCTCCTCCTC





23
CGCTGCTTCCTCCTCCTCCT





24
TGTACTTCTTGGTCTCCCCC





25
CTGTACTTCTTGGTCTCCCC





26
ACTGTACTTCTTGGTCTCCC





27
AACTGTACTTCTTGGTCTCC





28
CAACTGTACTTCTTGGTCTC





29
CCAACTGTACTTCTTGGTCT





30
CCCAACTGTACTTCTTGGTC





31
TCCCAACTGTACTTCTTGGT





32
CTCCCAACTGTACTTCTTGG





33
GCTCCCAACTGTACTTCTTG





34
CGCTCCCAACTGTACTTCTT





35
TCGCTCCCAACTGTACTTCT





36
CTCGCTCCCAACTGTACTTC





37
CCTCGCTCCCAACTGTACTT





38
CCCTCGCTCCCAACTGTACT





39
TCCCTCGCTCCCAACTGTAC





40
CTCCCTCGCTCCCAACTGTA





41
GCTCCCTCGCTCCCAACTGT





42
AGCTCCCTCGCTCCCAACTG





43
AAGCTCCCTCGCTCCCAACT





44
GAAGCTCCCTCGCTCCCAAC





45
TGAAGCTCCCTCGCTCCCAA





46
GTGAAGCTCCCTCGCTCCCA





47
AAGAAACAACCACCGCCCCG





48
AAAGAAACAACCACCGCCCC





49
AAAAGAAACAACCACCGCCC





50
AAAAAGAAACAACCACCGCC





51
CCCCTCAGGAATTAGAAAAA





52
ACCCCTCAGGAATTAGAAAA





53
CACCCCTCAGGAATTAGAAA





54
CCACCCCTCAGGAATTAGAA





55
ACCACCCCTCAGGAATTAGA





56
AACCACCCCTCAGGAATTAG





57
CAACCACCCCTCAGGAATTA





58
GCAACCACCCCTCAGGAATT





59
AGCAACCACCCCTCAGGAAT





60
CAGCAACCACCCCTCAGGAA





61
GCAGCAACCACCCCTCAGGA





62
AAGCAGCAACCACCCCTCAG





63
AAAGCAGCAACCACCCCTCA





64
AAAAGCAGCAACCACCCCTC





65
CAAAAGCAGCAACCACCCCT





66
GCAAAAGCAGCAACCACCCC





67
AGCAAAAGCAGCAACCACCC





68
TAGCAAAAGCAGCAACCACC





69
GTAGCAAAAGCAGCAACCAC





70
TGTAGCAAAAGCAGCAACCA





71
ATGTAGCAAAAGCAGCAACC





72
CATGTAGCAAAAGCAGCAAC





73
TCATGTAGCAAAAGCAGCAA





74
GTCATGTAGCAAAAGCAGCA





75
AGTCATGTAGCAAAAGCAGC





76
AAGTCATGTAGCAAAAGCAG





77
CAAGTCATGTAGCAAAAGCA





78
GCAAGTCATGTAGCAAAAGC





79
GGCAAGTCATGTAGCAAAAG





80
TGGCAAGTCATGTAGCAAAA





81
CTGGCAAGTCATGTAGCAAA





82
GCTGGCAAGTCATGTAGCAA





83
CGCTGGCAAGTCATGTAGCA





84
GCGCTGGCAAGTCATGTAGC





85
TCACTTACAGTCTGGTCCCA





86
TTCACTTACAGTCTGGTCCC





87
ACGTTCACTTACAGTCTGGT





88
GTGTAAAACGTTCACTTACA





89
TGTGTAAAACGTTCACTTAC





90
GTGTGTAAAACGTTCACTTA





91
TGTGTGTAAAACGTTCACTT





92
TGCAAATGTGTGTAAAACGT





93
ATGCAAATGTGTGTAAAACG





94
AATGCAAATGTGTGTAAAAC





95
CAATGCAAATGTGTGTAAAA





96
TTTACAATGCAAATGTGTGT





97
AAATACCTGGACTTATTTTT





98
AAAATACCTGGACTTATTTT





99
AAAAATACCTGGACTTATTT





100
AACGTACAGAAATGGGAGGG





101
AAACGTACAGAAATGGGAGG





102
CAAACGTACAGAAATGGGAG





103
ACAAACGTACAGAAATGGGA





104
AACAAACGTACAGAAATGGG





105
GAACAAACGTACAGAAATGG





106
CACTCCACACCTTGTTAGAA





107
ACACTCCACACCTTGTTAGA





108
GACACTCCACACCTTGTTAG





109
TCGCTGACACTCCACACCTT





110
GTATTCTCCCCACATTGCAC





111
TGTATTCTCCCCACATTGCA





112
ATGTATTCTCCCCACATTGC





113
ACAATGTATTCTCCCCACAT





114
TTGACTTCCAAACCTTATAT





115
TTTGACTTCCAAACCTTATA





116
CTACTATAATTTGACTTCCA





117
TCTACTATAATTTGACTTCC





118
TTCTACTATAATTTGACTTC





119
CATTCTACTATAATTTGACT





120
ACATTCTACTATAATTTGAC





121
GATACACATTCTACTATAAT





122
AGATACACATTCTACTATAA





123
TAGATACACATTCTACTATA





124
TTAGATACACATTCTACTAT





125
TTTAGATACACATTCTACTA





126
ATTTAGATACACATTCTACT





127
TATTTAGATACACATTCTAC





128
CTATTTAGATACACATTCTA





129
CACTATTTAGATACACATTC





130
GTCACTATTTAGATACACAT





131
AGTCACTATTTAGATACACA





132
CAGTCACTATTTAGATACAC





133
AGCAGTCACTATTTAGATAC





134
AAGCAGTCACTATTTAGATA





135
AAAGCAGTCACTATTTAGAT





136
CAAAGCAGTCACTATTTAGA





137
GCAAAGCAGTCACTATTTAG





138
GGCAAAGCAGTCACTATTTA





139
TGGCAAAGCAGTCACTATTT





140
AATGGCAAAGCAGTCACTAT





141
AAATGGCAAAGCAGTCACTA





142
GAAATGGCAAAGCAGTCACT





143
AATGAAATGGCAAAGCAGTC





144
AGGTTTGAATGAAATGGCAA





145
CAGGTTTGAATGAAATGGCA





146
TCAGGTTTGAATGAAATGGC





147
GTCAGGTTTGAATGAAATGG





148
CTTGTCAGGTTTGAATGAAA





149
CTTAGAGATAGACTTGTCAG





150
TCTTAGAGATAGACTTGTCA





151
CTCTTAGAGATAGACTTGTC





152
GCTCTTAGAGATAGACTTGT





153
GGCTCTTAGAGATAGACTTG





154
CGGCTCTTAGAGATAGACTT





155
GCGGCTCTTAGAGATAGACT





156
TGGCGGCTCTTAGAGATAGA





157
TCTGGCGGCTCTTAGAGATA





158
ATCTGGCGGCTCTTAGAGAT





159
AATCTGGCGGCTCTTAGAGA





160
TACTGCACACATGGAAATCT





161
ATACTGCACACATGGAAATC





162
AATACTGCACACATGGAAAT





163
ATAATACTGCACACATGGAA





164
CTTATAATACTGCACACATG





165
AACTTATAATACTGCACACA





166
TAACTTATAATACTGCACAC





167
ATAACTTATAATACTGCACA





168
GATAACTTATAATACTGCAC





169
TGATAACTTATAATACTGCA





170
ATGATAACTTATAATACTGC





171
GTTCCATGATAACTTATAAT





172
AGTTCCATGATAACTTATAA





173
TAGTTCCATGATAACTTATA





174
ATAGTTCCATGATAACTTAT





175
TATAGTTCCATGATAACTTA





176
TCTGCGTCCACCATATAGTT





177
GTCTGCGTCCACCATATAGT





178
GGTCTGCGTCCACCATATAG





179
AGGTCTGCGTCCACCATATA





180
AAGGTCTGCGTCCACCATAT





181
TTCTCAAGGTCTGCGTCCAC





182
GTTCTCAAGGTCTGCGTCCA





183
TGTTCTCAAGGTCTGCGTCC





184
TTGTTCTCAAGGTCTGCGTC





185
GTTGTTCTCAAGGTCTGCGT





186
GGTTGTTCTCAAGGTCTGCG





187
AGGTTGTTCTCAAGGTCTGC





188
TAGGTTGTTCTCAAGGTCTG





189
TTAGGTTGTTCTCAAGGTCT





190
TTTAGGTTGTTCTCAAGGTC





191
AATTTAGGTTGTTCTCAAGG





192
CCCATAATTTAGGTTGTTCT





193
CCCCATAATTTAGGTTGTTC





194
TCCCCATAATTTAGGTTGTT





195
CTCCCCATAATTTAGGTTGT





196
TCTCCCCATAATTTAGGTTG





197
AAATTCTCCCCATAATTTAG





198
CAATAAATGGCCAAAATAAT





199
TCTTTGGTCTAAAAGTAAAC





200
ATCTTTGGTCTAAAAGTAAA





201
AATCTTTGGTCTAAAAGTAA





202
CAATCTTTGGTCTAAAAGTA





203
TTTCTAGAACCCAATCTTTG





204
CATTTTCTAGAACCCAATCT





205
GCATTTTCTAGAACCCAATC





206
TGCATTTTCTAGAACCCAAT





207
GTGCATTTTCTAGAACCCAA





208
AGTGCATTTTCTAGAACCCA





209
CAAGTGCATTTTCTAGAACC





210
CCAAGTGCATTTTCTAGAAC





211
ACCAAGTGCATTTTCTAGAA





212
TACCAAGTGCATTTTCTAGA





213
ATACCAAGTGCATTTTCTAG





214
TATACCAAGTGCATTTTCTA





215
GTATACCAAGTGCATTTTCT





216
AGTATACCAAGTGCATTTTC





217
TAGTATACCAAGTGCATTTT





218
TTAGTATACCAAGTGCATTT





219
ACTTAGTATACCAAGTGCAT





220
TACTTAGTATACCAAGTGCA





221
ATACTTAGTATACCAAGTGC





222
AATACTTAGTATACCAAGTG





223
GTTTTAATACTTAGTATACC





224
AGTGTTGCCAACTGAAACAA





225
CAATTGAATGGGCAGTGTTG





226
TCAATTGAATGGGCAGTGTT





227
TTCAATTGAATGGGCAGTGT





228
TGAAGGCAATCGTTAATTTT





229
CTGAAGGCAATCGTTAATTT





230
ACTGAAGGCAATCGTTAATT





231
AACTGAAGGCAATCGTTAAT





232
AAACTGAAGGCAATCGTTAA





233
CAAACTGAAGGCAATCGTTA





234
ACAAACTGAAGGCAATCGTT





235
ACACAAACTGAAGGCAATCG





236
GTGACCACATACATCAAAAT





237
TTAGTGACCACATACATCAA





238
TTTACCTATAAGTACAATAG





239
GTTTACCTATAAGTACAATA





240
GGTTTACCTATAAGTACAAT





241
ACATATTTGCAAGGTTTACC





242
TACATATTTGCAAGGTTTAC





243
TTACATATTTGCAAGGTTTA





244
GTTACATATTTGCAAGGTTT





245
GGTTACATATTTGCAAGGTT





246
AGGTTACATATTTGCAAGGT





247
CAGGTTACATATTTGCAAGG





248
ACAGGTTACATATTTGCAAG





249
ACACAGGTTACATATTTGCA





250
AACACAGGTTACATATTTGC





251
GCAACACAGGTTACATATTT





252
GCGCAACACAGGTTACATAT





253
TGCGCAACACAGGTTACATA





254
TTGCGCAACACAGGTTACAT





255
TTTGCGCAACACAGGTTACA





256
CATTTGCGCAACACAGGTTA





257
ACTCAAATTTATGCGGCATT





258
ATCACTCAAATTTATGCGGC





259
ACATTAACAATCACTCAAAT





260
CAACATTAACAATCACTCAA





261
ACAACATTAACAATCACTCA





262
GACAACATTAACAATCACTC





263
AGACAACATTAACAATCACT





264
ACCACAGTATCACAATCAAG





265
GACCACAGTATCACAATCAA





266
TGACCACAGTATCACAATCA





267
ATGACCACAGTATCACAATC





268
CATATGACCACAGTATCACA





269
GCATATGACCACAGTATCAC





270
GACAAACACGGGCATATGAC





271
TGACAAACACGGGCATATGA





272
GTTCATAGTAAACATTTTTG





273
GTGTTCATAGTAAACATTTT





274
TGTGTTCATAGTAAACATTT





275
TCTGTGTGTTCATAGTAAAC





276
TTCTGTGTGTTCATAGTAAA





277
TATTTCTGTGTGTTCATAGT





278
GATATATATGAATTTAGCCT





279
AGATATATATGAATTTAGCC





280
AGACAAAAGTATCAAGATAT





281
AGTTGATTGGTCTTTAAAAA





282
CCCTATAAGTTGATTGGTCT





283
AAAAAGCCTTTGAATTCCCT





284
TAAATTTTAGTTTGGCTGAA





285
TTAAATTTTAGTTTGGCTGA





286
TTTAAATTTTAGTTTGGCTG





287
GTTTAAATTTTAGTTTGGCT





288
TTAGAGTCAGTTCAAATTAA





289
TTTAGAGTCAGTTCAAATTA





290
TTTTAGAGTCAGTTCAAATT





291
TCATTTTTAGAGTCAGTTCA





292
TTCATTTTTAGAGTCAGTTC





293
GTTCACAAAGGGAAAAATAC





294
CTGCTCCTTGTAAAATTTGT





295
GCTGCTCCTTGTAAAATTTG





296
TGTTTATTAAATAGGCTGCT





297
GTGTTTATTAAATAGGCTGC





298
TAGTGTTTATTAAATAGGCT





299
CTAGTGTTTATTAAATAGGC





300
GCTAGTGTTTATTAAATAGG





301
AAAGCCTATACTTTGTTTAA





302
TCAGCTGAAAAGCCTATACT





303
ATCAGCTGAAAAGCCTATAC





304
TATCAGCTGAAAAGCCTATA





305
GTATCAGCTGAAAAGCCTAT





306
GGTATCAGCTGAAAAGCCTA





307
TGTATATCCACAGAAACTTA





308
CTTTTTGCTGTATATCCACA





309
TCTTTTTGCTGTATATCCAC





310
CTCTTTTTGCTGTATATCCA





311
TCTCTTTTTGCTGTATATCC





312
ATCTCTTTTTGCTGTATATC





313
ATATCTCTTTTTGCTGTATA





314
TATATCTCTTTTTGCTGTAT





315
TTATATCTCTTTTTGCTGTA





316
ATTATATCTCTTTTTGCTGT





317
AATTATATCTCTTTTTGCTG





318
GGTAAAGAGCTATGCACAGA





319
GGGTAAAGAGCTATGCACAG





320
AGGGTAAAGAGCTATGCACA





321
CAGGGTAAAGAGCTATGCAC





322
ACAGGGTAAAGAGCTATGCA





323
AACACAGGGTAAAGAGCTAT





324
GCCAAGCTCTATTAACAATA





325
TGCCAAGCTCTATTAACAAT





326
TTGCCAAGCTCTATTAACAA





327
TTTGCCAAGCTCTATTAACA





328
ATAATTTGCCAAGCTCTATT





329
TATAATTTGCCAAGCTCTAT





330
TTATAATTTGCCAAGCTCTA





331
ATTTATAATTTGCCAAGCTC





332
TATTTATAATTTGCCAAGCT





333
TTATTTATAATTTGCCAAGC





334
ACTTCTATCTAACCATATAC





335
GTCACTTCTATCTAACCATA





336
AGTCACTTCTATCTAACCAT





337
TAGTCACTTCTATCTAACCA





338
ATAGTCACTTCTATCTAACC





339
TATAGTCACTTCTATCTAAC





340
TTATAGTCACTTCTATCTAA





341
ATTATAGTCACTTCTATCTA





342
CATTATAGTCACTTCTATCT





343
GCATTATAGTCACTTCTATC





344
TGCATTATAGTCACTTCTAT





345
GTGCATTATAGTCACTTCTA





346
GGGCTCTGTGTGTCTATATA





347
AGGGCTCTGTGTGTCTATAT





348
AAGGGCTCTGTGTGTCTATA





349
GAAGGGCTCTGTGTGTCTAT





350
TGAAGGGCTCTGTGTGTCTA





351
ACTGAAGGGCTCTGTGTGTC





352
GAACTGAAGGGCTCTGTGTG





353
TGAACTGAAGGGCTCTGTGT





354
CTGAACTGAAGGGCTCTGTG





355
CCTGAACTGAAGGGCTCTGT





356
AAATTGTACCTGAACTGAAG





357
CAAATTGTACCTGAACTGAA





358
GCAAATTGTACCTGAACTGA





359
CGCAAATTGTACCTGAACTG





360
GCGCAAATTGTACCTGAACT





361
ATAAATGCTGACTTAGAAAG





362
AAATAAATGCTGACTTAGAA





363
AAAATAAATGCTGACTTAGA





364
GTGGGTAAACAGCCACAAAA





365
TGTGGGTAAACAGCCACAAA





366
ATTGTGGGTAAACAGCCACA





367
CATTGTGGGTAAACAGCCAC





368
TCATTGTGGGTAAACAGCCA





369
TTCATTGTGGGTAAACAGCC





370
TTTCATTGTGGGTAAACAGC





371
CTTTCATTGTGGGTAAACAG





372
TCTTTCATTGTGGGTAAACA





373
CTCTTTCATTGTGGGTAAAC





374
ACTCTTTCATTGTGGGTAAA





375
AACTCTTTCATTGTGGGTAA





376
GAACTCTTTCATTGTGGGTA





377
AGAACTCTTTCATTGTGGGT





378
TAGAACTCTTTCATTGTGGG





379
TTAGAACTCTTTCATTGTGG





380
CTTTATTAGAACTCTTTCAT





381
ACATCTTTATTAGAACTCTT





382
GCACATCTTTATTAGAACTC





383
CAGCACATCTTTATTAGAAC





384
TCAGCACATCTTTATTAGAA








Claims
  • 1-82. (canceled)
  • 83. An antisense oligonucleotide comprising an antisense oligonucleotide sequence that hybridizes to a target nucleic acid sequence located within positions 2000-2100 or 2900-3000 of a FOXG1 nucleic acid.
  • 84. The antisense oligonucleotide of claim 83, wherein the antisense oligonucleotide sequence comprises SEQ ID NO: 100, SEQ ID NO:103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289.
  • 85. The antisense oligonucleotide of claim 83, wherein the antisense oligonucleotide hybridizes to one or more nucleotides within or adjacent to a position on the FOXG1 nucleic acid targeted by SEQ ID NO: 100, SEQ ID NO:103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289.
  • 86. The antisense oligonucleotide of claim 83, wherein the antisense oligonucleotide sequence comprises 90% sequence identity or greater to SEQ ID NO: 100, SEQ ID NO: 103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289.
  • 87. The antisense oligonucleotide of claim 83, wherein the antisense oligonucleotide sequence comprises 10 or more contiguous nucleotides selected from a sequence within SEQ ID NO: 100, SEQ ID NO: 103, SEQ ID NO: 284, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, or SEQ ID NO: 289.
  • 88. The antisense oligonucleotide of claim 83, wherein antisense oligonucleotide comprises a modification.
  • 89. The antisense oligonucleotide of claim 88, wherein the modification comprises a modified inter-nucleoside linkage, a modified nucleoside, or a combination thereof.
  • 90. The antisense oligonucleotide of claim 89, wherein the modified inter-nucleoside linkage is a phosphorothioate inter-nucleoside linkage and/or a phosphodiester inter-nucleoside linkage.
  • 91. The antisense oligonucleotide of claim 89, wherein the modified nucleoside comprises a modified sugar, optionally wherein the modified sugar is a bicyclic sugar.
  • 92. The antisense oligonucleotide of claim 91, wherein the modified sugar comprises a 2′-O-methoxyethyl group.
  • 93. The antisense oligonucleotide of claim 83, wherein the FOXG1 nucleic acid comprises a 5′ untranslated region (5′ UTR) and a 3′ untranslated region (3′ UTR), and wherein the target sequence is located at the 5′ UTR or the 3′ UTR of the FOXG1 nucleic acid.
  • 94. The antisense oligonucleotide of claim 83, wherein the FOXG1 nucleic acid molecule is a ribonucleic acid (RNA).
  • 95. A pharmaceutical composition comprising the antisense oligonucleotide of claim 83 and a pharmaceutically acceptable carrier or diluent.
  • 96. A method of modulating expression of a FOXG1 in a cell, comprising contacting the cell with a composition comprising an antisense oligonucleotide sequence that hybridizes to a target nucleic acid sequence located within positions 2000-2100 or 2900-3000 of a FOXG1 nucleic acid.
  • 97. The method of claim 96, wherein the cell is a located in a brain of an individual.
  • 98. The method of claim 96, wherein the individual is a human.
  • 99. The method of claim 97, wherein the individual comprises a mutated FOXG1 gene.
  • 100. The method of claim 97, wherein the individual has a FOXG1 disease or disorder.
  • 101. The method of claim 100, wherein the FOXG1 disease or disorder is FOXG1 syndrome.
  • 102. A method of treating or ameliorating a FOXG1 disease or disorder in an individual having, or at risk of having, the FOXG1 disease or disorder, comprising administering to the individual an antisense oligonucleotide, wherein the antisense oligonucleotide comprises a sequence that hybridizes to a target nucleic acid sequence located within positions 2000-2100 or 2900-3000 of a FOXG1 nucleic acid, thereby treating or ameliorating a FOXG1 disease in the individual.
CROSS-REFERENCE

This application claims the benefit of U.S. Provisional Patent Application No. 63/127,907, filed Dec. 18, 2020, which is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
63127907 Dec 2020 US
Continuations (1)
Number Date Country
Parent PCT/US21/64082 Dec 2021 US
Child 18336603 US