Holder and deployment system for prosthetic heart valves

Information

  • Patent Grant
  • 11980544
  • Patent Number
    11,980,544
  • Date Filed
    Thursday, June 30, 2022
    a year ago
  • Date Issued
    Tuesday, May 14, 2024
    20 days ago
Abstract
A holder for a hybrid heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The hybrid heart valve includes a non-expandable, non-compressible prosthetic valve and a self-expandable anchoring stent, thereby enabling attachment to the annulus without sutures. A first suture connects the holder to the valve and constricts an inflow end of the anchoring stent. A second suture connects the holder to the valve and extends down three holder legs to loop through fabric on the valve. Both sutures may loop over a single cutting well on the holder so that severing the first and second sutures at the single cutting well simultaneously releases the tension in the first suture, permitting the inflow end of the anchoring stent to expand, and disconnects the valve holder from the prosthetic heart valve.
Description
TECHNICAL FIELD

The present application generally relates to prosthetic valves for implantation in body channels. More particularly, the present application relates to a holder for a hybrid surgical prosthetic heart valve having a non-collapsible/non-expandable valve portion and a self-expanding anchoring stent.


BACKGROUND

In vertebrate animals, the heart is a hollow muscular organ having four pumping chambers—the left and right atria and the left and right ventricles—each provided with its own one-way valve to ensure that blood does not flow in the wrong direction. The mitral valve is between the left atrium and the left ventricle, the tricuspid valve between the right atrium and the right ventricle, the pulmonary valve is at the opening of the pulmonary artery, and the aortic valve is at the opening of the aorta above the left ventricle. The natural heart valves are each mounted in an annulus comprising dense fibrous rings attached either directly or indirectly to the atrial and ventricular muscle fibers. Each annulus defines a flow orifice.


Various surgical techniques may be used to repair or replace a diseased or damaged valve. Due to aortic stenosis and other heart valve diseases, thousands of patients undergo surgery each year wherein the defective native heart valve is replaced by a prosthetic valve, either bioprosthetic or mechanical.


When the valve is replaced, surgical implantation of the prosthetic valve typically requires an open-chest surgery during which the heart is stopped and patient placed on cardiopulmonary bypass (a so-called “heart-lung machine”). In one common surgical procedure, the diseased native valve leaflets are excised and a prosthetic valve is sutured to the surrounding tissue at the valve annulus. Because of the trauma associated with the procedure and the attendant duration of extracorporeal blood circulation, some patients do not survive the surgical procedure or die shortly thereafter. Due to these risks, a substantial number of patients with defective valves are deemed inoperable because their condition is too frail to withstand the procedure. By some estimates, about 30 to 50% of the subjects suffering from aortic stenosis who are older than 80 years cannot be operated on for aortic valve replacement.


Percutaneous and minimally-invasive surgical approaches, some of which avoid cardiopulmonary bypass altogether in “beating heart” procedures, are garnering intense attention. Although these remote implantation techniques have shown great promise for treating certain patients, replacing a valve via surgical intervention and bypass is still the preferred treatment procedure. One hurdle to the acceptance of remote implantation is resistance from doctors who are anxious about converting from an effective, if imperfect, regimen to a novel approach that promises great outcomes but is relatively foreign. In conjunction with the understandable caution exercised by surgeons in switching to new techniques of heart valve replacement, regulatory bodies around the world are moving slowly as well.


Accordingly, there is a need for a prosthetic valve that can be surgically implanted in a body channel in a more efficient procedure so as to reduce the time required on extracorporeal circulation. One solution especially for aortic valve replacement is provided by the Edwards Intuity valve system available from Edwards Lifesciences of Irvine, CA Aspects of the Edwards Intuity valve system are disclosed in U.S. Pat. No. 8,641,757 to Pintor, et al. The Edwards Intuity valve is a hybrid of a surgical valve and an expandable stent that helps secure the valve in place in a shorter amount of time. The implant process only requires three sutures which reduces the time-consuming process of tying knots. A delivery system advances the Edwards Intuity valve with the stent at the leading end until it is located within the left ventricle, at which point a balloon inflates to expand the stent against the ventricular wall. The long handle and delivery system design facilitate access through smaller incisions (mini-sternotomy or right anterior thoracotomy) than with conventional full sternotomies.


There remains a need for further innovative approaches like the Edwards Intuity valve system that combine the proven effectiveness of existing surgical valves and shorten the implant procedure time.


SUMMARY

The present application discloses prosthetic valves and methods of use for replacing a defective native valve in a human heart. Certain embodiments are particularly well adapted for use in a surgical procedure for quickly and easily replacing a heart valve while minimizing time using extracorporeal circulation (e.g., bypass pump). In particular, the application discloses an advantageous system and method for holding and delivering a hybrid prosthetic heart in less time than previously was possible.


One aspect of the application is a combination of a prosthetic heart valve for implant at a heart valve annulus and a holder therefor. The combination includes a “hybrid” prosthetic heart valve having a valve member and a self-expandable anchoring stent. The valve member includes a non-expandable, non-collapsible annular support structure defining a flow orifice and an inflow end defining an inflow direction with an outflow direction opposite thereto. The valve member also has valve leaflets attached to the support structure and mounted to alternately open and close across the flow orifice. The self-expandable anchoring stent has a first or outflow end extending around the flow orifice and connected to the valve member at the inflow end of the support structure so that the first end maintains a fixed diameter. The anchoring stent also has a second or inflow end projecting in the inflow direction away from the support structure and having a relaxed, expanded shape defining a first peripheral size.


In a first embodiment, the valve holder connects by a first suture to the prosthetic heart valve, wherein the first suture extends around the second end of the anchoring stent and is placed under tension to constrict the second end to a second peripheral size smaller than the first peripheral size. The first suture desirably passes over a single cutting well on the valve holder such that severing the first suture at the single cutting well releases the tension therein and permits the second end of the anchoring stent to expand toward its first peripheral size.


In a second embodiment, the valve holder connects by a first suture to the prosthetic heart valve, wherein the first suture has a first free end attached to the valve holder, a middle portion that extends in a first length in the inflow direction, in a second length around the entire inflow end of the anchoring stent, and in a third length back to the valve holder alongside the first length, the first suture further having a fourth length that passes over a cutting well on the valve holder and ends in a second free end attached to the valve holder such that when the two free ends are attached to the valve holder the first suture is under tension and constricts the inflow end from a relaxed size to a smaller size.


In either valve-holder connection embodiment, the anchoring stent has a fabric covering, and wherein the first suture passes in a serpentine fashion through the fabric covering around the second or inflow end of the anchoring stent. The valve holders may be further connected by a second suture to the prosthetic heart valves, each valve holder including a plurality of legs (preferably three) that contact the valve member at the same number of locations having fabric incorporated into the valve member, and wherein the second suture passes circumferentially around the valve holder and threads through the fabric at the locations. Both the first and second sutures desirably pass over a single cutting well on the valve holder such that severing the first and second sutures at the single cutting well simultaneously releases the tension in the first suture, permitting the second end of the anchoring stent to expand toward its first peripheral size, and disconnects the valve holder from the prosthetic heart valve. The valve member support structure preferably has three commissure posts projecting in the outflow direction and three cusps therebetween that arc in the inflow direction, and the valve leaflets are flexible and partly supported by the commissure posts of the support structure. In this configuration, the valve holder includes a central hub and three legs that angle outward and in the inflow direction to contact the valve member at the three cusps, and wherein the first suture is tied at two free ends to a terminal foot of one of the holder legs. Also with this valve configuration, the valve holders further may be connected by a second suture to the prosthetic heart valve that passes circumferentially around the valve holder and threads through the fabric at the three cusps. The second suture may be tied at first and second free ends to the holder, and in between passes circumferentially around the hub of the holder and descends down each of the three legs to pass through two holes at a terminal foot thereof. The second suture is also preferably threaded through the fabric at each of the three cusps between the two holes, and circles completely around each leg between the hub and the respective foot.


A method of deploying a prosthetic heart valve for implant at a heart valve annulus disclosed herein comprises:

    • providing a prosthetic heart valve having a valve member with a non-expandable, non-collapsible annular support structure and valve leaflets mounted thereto to alternately open and close, and a self-expandable anchoring stent connected to the valve member at an inflow end of the support structure and having an inflow end projecting in the inflow direction away from the support structure, the prosthetic heart valve being secured to a valve holder by a first suture that attaches at two free ends to the valve holder and extends around the entire inflow end of the anchoring stent under tension and constricts the inflow end from a relaxed size to a smaller size, the first suture having a middle portion that passes over a cutting well on the valve holder;
    • advancing the prosthetic heart valve to the heart valve annulus; and
    • severing the first suture at the cutting well to release the tension therein and permit the inflow end of the anchoring stent to expand toward its relaxed size.


The method may also involve a second suture connecting the prosthetic heart valve to the holder, wherein both the first and second sutures pass over the cutting well on the valve holder such that severing the first and second sutures at the cutting well simultaneously releases the tension in the first suture, permitting the inflow end of the anchoring stent to expand toward its first peripheral size, and disconnects the valve holder from the prosthetic heart valve. The valve holder preferably includes a central hub and a plurality of legs that contact the valve member at the same number of locations having fabric incorporated into the valve member, wherein the second suture passes circumferentially around the valve holder and threads through the fabric at the locations. The second suture is desirably tied at first and second free ends to the holder, and in between passes circumferentially around the hub of the holder and descends down each of the legs to pass through two holes at a terminal foot thereof. The valve member support structure preferably has three commissure posts projecting in the outflow direction and three cusps therebetween that arc in the inflow direction, and the second suture is threaded through the fabric at each of the three cusps and between the two holes, and wherein the second suture circles completely around each leg between the hub and the respective foot.


A further understanding of the nature and advantages of the present invention are set forth in the following description and claims, particularly when considered in conjunction with the accompanying drawings in which like parts bear like reference numerals.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be explained and other advantages and features will appear with reference to the accompanying schematic drawings wherein:



FIG. 1 shows both exploded and assembled views of an exemplary hybrid prosthetic heart valve (hereinafter, “heart valve”) for which the holder and deployment system of the present application is designed, with fabric coverings removed from an anchoring stent for clarity;



FIG. 2 is an exploded view of the expandable anchoring stent and its fabric coverings which form a component of the heart valve in FIG. 1;



FIG. 3 shows both exploded and assembled views of the finished heart valve showing the fabric-covered anchoring stent in its expanded, deployed state;



FIG. 4A is an exploded view of an exemplary valve holder above the heart valve with the anchoring stent expanded, and FIG. 4B shows the valve holder coupled to the heart valve with a pair of connecting sutures, one of which maintains the anchoring stent in its constricted, delivery state;



FIGS. 5A-5C are perspective and top plan views of the exemplary valve holder prior to coupling with the heart valve and showing the initial attachment locations of the first free ends of the pair of connecting sutures to the holder;



FIGS. 6-11B illustrate a number of steps taken to couple the valve holder to the heart valve using an upper connecting suture, wherein:



FIG. 6 shows the valve holder exploded above the heart valve and the initial path of the upper connecting suture passed downward through a portion of the fabric of the heart valve;



FIGS. 7A and 7B are perspective and top plan views of the valve holder in contact with the heart valve and illustrating the path of the upper connecting suture after having secured a first leg of the holder to the heart valve;



FIGS. 8A and 8B illustrate the path of the upper connecting suture as it traverses between the first leg of the holder to a second leg where it is again secured to the heart valve;



FIGS. 9A and 9B illustrate the path of the upper connecting suture after having secured the second leg of the holder to the heart valve and wraps around a cutting well provided on the second leg of the holder;



FIGS. 10A and 10B illustrate the path of the upper connecting suture as it traverses between the second leg of the holder to a third leg where it is again secured to the heart valve;



FIGS. 11A and 11B illustrate a second free end of the upper connecting suture after being secured to the holder at the first leg;



FIGS. 12A-13B illustrate a number of steps taken to further couple the valve holder to the heart valve and constrict the anchoring stent using a lower connecting suture, wherein:



FIGS. 12A and 12B are two perspective views of the valve holder secured to the heart valve via the upper connecting suture and illustrating the initial path of the lower connecting suture as it passes downward from the second leg of the holder through fabric of the heart valve to a lower end of the anchoring stent;



FIGS. 12C and 12D illustrate the path of the lower connecting suture as it circumscribes the lower end of the anchoring stent and passes back upward to the second leg of the valve holder;



FIG. 12E illustrates the path of the lower connecting suture as it wraps around the cutting well provided on the second leg of the holder;



FIG. 12F illustrates conversion of the anchoring stent from its expanded to its constricted state by tensioning the lower connecting suture;



FIGS. 13A and 13B illustrate a second free end of the lower connecting suture again secured to the valve holder;



FIGS. 14A and 14B are top and bottom plan views, respectively, of the valve holder secured to the heart valve using the connecting sutures;



FIGS. 15A-15C are several partial sectional elevational views of the three valve holder legs having the connecting sutures attached thereto;



FIGS. 16A and 16B are perspective views at two different angles of the valve holder and heart valve assembly shown in phantom so as to better illustrate the pathway of the connecting sutures;



FIG. 17A illustrates a scalpel descending into the cutting well on the second leg of the valve holder to sever the two connecting sutures, and FIG. 17B shows the consequent conversion of the anchoring stent from its constricted to its expanded state and separation of the valve holder from the heart valve;



FIG. 18A is an elevational view of the valve holder secured to an alternative hybrid prosthetic heart valve using connecting sutures; and



FIG. 18B is an elevational view of the assembly of FIG. 18A after severing of the connecting sutures to permit an anchoring stent of the heart valve to expand.





DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

The present disclosure provides a valve holder for hybrid prosthetic heart valves delivered by open-heart surgery, but which include features that decrease the duration of the treatment procedure. The prosthetic heart valves of the present invention are primarily intended to be delivered and implanted using surgical techniques, including the aforementioned open-heart surgery. There are a number of approaches in such surgeries, all of which result in the formation of a direct access pathway to the particular heart valve annulus. For clarification, a direct access pathway is one that permits direct (e.g., naked eye) visualization of the heart valve annulus.


The “hybrid” prosthetic heart valve has both non-expandable and expandable portions; specifically, an expandable anchoring stent or stent coupled to a non-expandable valve member. With this type of valve, the duration of the anchoring operation is greatly reduced as compared with a typical sewing procedure utilizing an array of sutures that must be knotted. The expandable anchoring stent may simply be radially expanded outward into contact with the implantation site, or may be provided with additional anchoring means, such as barbs. As stated, open-heart approach and cardiopulmonary bypass familiar to cardiac surgeons are used. However, due to the expandable anchoring stent, the time on bypass is greatly reduced by the relative speed of implant in contrast to the previous time-consuming knot-tying process. As mentioned above, an exemplary hybrid prosthetic heart valve is disclosed in U.S. Pat. No. 8,641,757 to Pintor, et al., filed Jun. 23, 2011, to which priority is claimed, and which is hereby expressly incorporated by reference herein.


For definitional purposes, the terms “stent” or “anchoring stent” refer to a structural component that is capable of anchoring to tissue of a heart valve annulus. The coupling stents described herein are most typically tubular stents, or stents having varying shapes or diameters. A stent is normally formed of a biocompatible metal frame, and may be formed of a plastically-expandable material such as stainless steel or cobalt-chromium, or a self-expandable material such as Nitinol. In the context of the present invention the stents are preferably made from laser-cut tubing of a self-expandable metal. It is conceivable, however, that the coupling stent could be separate self-expanding clamps or hooks that do not define a continuous periphery. Although such devices sacrifice some contact uniformity, and speed and ease of deployment, they could be configured to work in conjunction with a particular valve member.


The term “valve member” refers to that component of a heart valve that possesses the fluid occluding surfaces to prevent blood flow in one direction while permitting it in another. As mentioned above, various constructions of valve members are available, including those with flexible leaflets and those with rigid leaflets, or even a ball and cage arrangement. The leaflets may be bioprosthetic, synthetic, metallic, or other suitable expedients. In a preferred embodiment, the non-expandable valve member is an “off-the-shelf” standard surgical valve of the type that has been successfully implanted using sutures for many years, such as the Carpentier-Edwards PERIMOUNT Magna® Aortic Heart Valve available from Edwards Lifesciences of Irvine, California, though the autonomous nature of the valve member is not absolutely required. In this sense, a “off-the-shelf” prosthetic heart valve is suitable for stand-alone sale and use, typically including a non-expandable, non-collapsible support structure having a sealing ring capable of being implanted using sutures through the sealing ring in an open-heart, surgical procedure.


As a point of further definition, the term “expandable” is used herein to refer to a component of the heart valve capable of expanding from a first, delivery diameter to a second, implantation diameter. An expandable structure, therefore, does not simply mean one that might undergo slight expansion from a rise in temperature, or other such incidental cause such as fluid dynamics acting on leaflets or commissures. Conversely, “non-expandable” should not be interpreted to mean completely rigid or dimensionally stable, as some slight expansion of conventional “non-expandable” heart valves, for example, may be observed.


An aortic valve replacement would be implanted in, or adjacent to, the aortic annulus, while a mitral valve replacement will be implanted at the mitral annulus. Certain features of the present invention are particularly advantageous for an aortic valve replacement. However, unless the combination is structurally impossible, or excluded by claim language, any of the heart valve embodiments described herein could be implanted in any body channel.



FIG. 1 shows both exploded and assembled views of an exemplary hybrid prosthetic heart valve 20 (hereinafter, “heart valve”) having a valve member 22 and an expandable anchoring stent 24 with fabric coverings removed for clarity. FIG. 2 is an exploded view of the expandable anchoring stent 24 and its fabric coverings 26, 28, with the cloth-covered stent 24′ seen at the bottom, while FIG. 3 shows both exploded and assembled views of the finished heart valve 20 with the fabric-covered anchoring stent 24′ in its expanded, deployed state.


The exemplary hybrid prosthetic heart valve 20 of the present application desirably includes the valve member 22 with the anchoring stent 24 attached to and extending from an inflow end thereof. The valve member 22 is desirably non-collapsible and non-expandable, while the anchoring stent 24 may expand from a contracted state into the expanded state shown, as will be described. In the illustrated embodiment, the anchoring stent 24 features a series of axial struts with a chevron-shaped pattern of circumferential struts therebetween which expand when unrestrained to the shape shown in FIG. 1.


The valve member 22 preferably includes a plurality of leaflets 30 supported by and extending inward from a cloth-covered inner support frame (not shown) that defines upstanding commissure posts 32 intermediate the same number of cusps 34. There are typically three commissure posts 32 alternating with three cusps 34 to support three leaflets 30 along each of the cusps, though only two or more than three are known. The leaflets 30 provide the occluding surfaces for the prosthetic heart valve 20 which ensure one-way blood flow through the valve. The illustrated valve member 22 includes a peripheral sealing ring 36 surrounding the inflow end thereof. The heart valve 20 is desirably for implantation at the aortic annulus and the sealing ring 36 therefore preferably has an undulating up and down shape around its periphery to match the native aortic annulus.


It should be noted that a sealing ring per se may not be necessary with the present heart valve as the primary function of such a component is normally to provide a platform through which to pass a number of anchoring sutures around the valve periphery. However, sutures are not used to implant the hybrid heart valve 20 except perhaps for a small number (e.g., 3) guide sutures. For instance, several tabs extending outward from the valve structure could be used for anchoring the guide sutures which take the place of the sealing ring for that purpose. To help prevent paravalvular leaking, a peripheral seal such as a fabric skirt as described below may be added in place of the sealing ring.


The leaflets 30 are desirably flexible, preferably bioprosthetic leaflets. For example, the valve leaflets 30 may be tissue from another human heart (cadaver), a cow (bovine), a pig (porcine valve) or a horse (equine). In some embodiments, the leaflets are pericardium or treated pericardium, for example, bovine, porcine, equine, or kangaroo. Alternatively, the valve member may comprise mechanical components rather than biological tissue. Although an autonomous (e.g., capable of stand-alone surgical implant) flexible leaflet valve member 22 is described and illustrated, alternative valve members that have rigid leaflets, or are not fully autonomous may be substituted.


In one embodiment, the valve member 22 comprises a Carpentier-Edwards PERIMOUNT Magna® Aortic Heart Valve available from Edwards Lifesciences of Irvine, California. In another embodiment, the valve member 22 comprises a PERIMOUNT Magna® Aortic valve subjected to tissue treatment that permits dry packaging and sterilization, and that eliminates the need to rinse a preservative from the valves before implantation.


For bioprosthetic valves, an exemplary process includes storing the prosthetic heart valve 20 in a preservative solution after manufacture and prior to use. A preservative such as glutaraldehyde is provided within a storage jar. This “wet” storage arrangement applies to the illustrated heart valve 20 shown, which includes bioprosthetic leaflets. However, as mentioned above, the heart valve could also be used without a preservative solution for bioprosthetic leaflets that have been dried, for example, using suitable tissue treatments from Edwards Lifesciences, and also for mechanical valves.


The general function of the anchoring stent 24 is to provide the means to attach the prosthetic valve member 22 to the native aortic root. This attachment method is intended as an alternative to the present standard surgical method of suturing aortic valve bio-prostheses to the aortic valve annulus, and is accomplished in much less time. Further, this attachment method improves ease of use by eliminating most if not all suturing and knot tying. The anchoring stent 24 is formed of a self-expandable metallic member desirably covered by a polyester fabric to help seal against paravalvular leakage and promote tissue ingrowth once implanted within the annulus.


In a preferred embodiment, an inner fabric layer 26 immediately covering the anchoring stent 24 (inner fabric layer) comprises polytetrafluoroethylene (PTFE) cloth, such as TEFLON® PTFE (DuPont, Wilmington, Del.), although other biocompatible fabrics may be used. More particularly, the fabric 26 is a PTFE flat yarn. A sealing flange 28 comprises a much thicker material to provide prevention of paravalvular leakage. For instance, the sealing flange 28 is formed of a plush polymer, and made of polyethylene terephthalate (PET). More preferably, the material of the sealing flange 28 has a base yarn which is flat yarn 40/27, and a loop yarn extending therefrom made from PET 70/12 textured yarn both obtained from Atex Technologies Inc. of Pinebluff, NC The thickness of the sealing flange 28 material is desirably about 1.2 mm, uncompressed, while the thickness of the fabric 26 may be 50% or less of that. In alternative embodiments, different materials can be used from the covering layer 26 and the sealing flange 28, such as PTFE/cloth, cloth/cloth, or PTFE or cloth for the covering layer 26 and a swellable hydrophilic polymer such as an acrylic for the sealing flange 28. The sealing flange 28 is shown located around the upper or outflow end of the anchoring stent 24, although it may also cover the entire anchoring stent or be located around just the lower or inflow end.


As seen schematically in FIGS. 1-3, the valve member 22 preferably attaches to the anchoring stent 24 via a plurality of attachment sutures 40. The sutures 40 desirably loop around an upper circumferential strut 42 on the anchoring stent 24 and pass through fabric at the inflow end of the valve member 22. There are a number of ways to connect the two components such as shown and described in U.S. Pat. No. 8,641,757 to Pintor, et al., the entire disclosure which is incorporated by reference, mentioned above.



FIG. 4A is an exploded view of an exemplary valve holder 50 above the heart valve 20 with the fabric-covered anchoring stent 24′ expanded. The valve holder 50 includes a central tubular hub 52 having internal threads 54, and a plurality of stabilizing legs 56 projecting axially and radially outward therefrom. Preferably, there are three stabilizing legs 56 each of which contacts and attaches to a cusp 34 of the valve member 22 between commissure posts 32. The valve holder 50 secures with sutures to the valve member 22 from the time of manufacture to the time of implant, as seen in FIG. 4B, and is stored with the valve member. In one embodiment, the holder 22 is formed of a rigid polymer such as polypropylene that is transparent to increase visibility of an implant procedure. The holder 22 exhibits relatively wide openings between the stabilizing legs 56, which provide a surgeon good visibility of the valve leaflets 30. The transparency of the legs further facilitates visibility and permits transmission of light therethrough to minimize or reduce shadows. It should be noted that the exemplary heart valve 20 is generally symmetric about three radial sections with three cusps, three commissures, and three flexible leaflets, matching a holder 22 with three legs 56. However, other configurations of heart valves are available and the holder may have more or fewer legs as necessary.



FIG. 4B shows the valve holder 50 coupled to the heart valve 20 with a pair of connecting sutures 60, 62, one of which maintains the anchoring stent 24′ in its constricted, delivery state. As will be explained below, an upper connecting suture 60 secures each of the three legs 56 to one of the cusps 34 of the valve member 22, while a lower connecting suture 62 extends downward from one of the legs and is threaded peripherally around a lower end 64 of the anchoring stent 24′. Tension on the lower connecting suture 62 constricts the anchoring stent 24′, and the suture is then tied off to maintain the anchoring stent in its delivery state, as shown.


Preferably, there is one upper connecting suture and one lower connecting suture, as shown, although only a single connecting suture or more than one of each are also possible. As will be explained, at least one suture functions to securely attach the holder to the heart valve, and one functions to maintain a self-expanding stent constricted. These functions may be accomplished with a single suture, though for the sake of stability and ease of assembly two are used, as is explained herein. Furthermore, although a particular path for both upper and lower connecting sutures are used for the particular holder shown, other suture paths can be used with other holders.



FIGS. 5A-5C best illustrate specific features of the exemplary valve holder 50. As explained above, the holder 50 preferably includes the central hub 52 and three stabilizing legs 56a, 56b, and 56c. For the purpose of explaining a series of steps coupling the holder 52 the prosthetic heart valve 20, the holder includes a first leg 56a, a second leg 56b, and a third leg 56c, moving clockwise around an axis of the holder as seen in the plan view of FIG. 5C. The connecting sutures 60, 62 are shown attached at respective first free ends to the holder prior to their use in attaching the heart valve 20. More particularly, the upper connecting suture 60 has a first end tied off on the first leg 56a, and the lower connecting suture 62 has a first end tied off on the second leg 56b.


The three legs 56a, 56b, and 56c are identical and evenly spaced circumferentially around the central hub 52 (e.g., 120° spacing therebetween) in the illustrated example. With reference to FIG. 5B, each leg 56 has an upper bridge portion 66 that initially projects directly radially outward from the hub 52 and a leg portion 68 that angles downward and outward. In one embodiment, the angle that each leg portion 68 makes with a central axis through the holder is between about 10°-45°. The bridge portion 66 comprises a pair of axially-oriented (e.g., vertical) outer walls 70 that are generally parallel to and extend upward over a radially-oriented cutting guide or well 72. Along the top edge of each of the outer walls 70 is formed a small notch 74 the purpose of which will become clear below. Additionally, a small aperture 76 extends through each of the outer walls 70 just below its notch 74. As seen in FIG. 5A, each leg portion 68 has a substantially rectangular cross-section on a majority of its length as it extends downward from the bridge portion 66, though other cross-sections are contemplated. A lower end of each leg portion 68 terminates in an outwardly-angled flange 78 defining a pair of through holes 80, and a downwardly-directed flange 82. A channel 84 formed between the flange 78, 82 receives a portion of the cusps 34 of the valve member 22, as will be seen. The downwardly-directed flange 82 may be eliminated such that only the outwardly-angled flanges 78 contact the valve cusps 34. Two through holes 80 open on their lower ends in the channel 84.


The upper connecting suture 60 has a first free end 86 that is tied to one of the outer walls 70 of the first holder leg 56a, as best seen in FIG. 5A. Specifically, the first free end 86 loops through the small aperture 76 and over the notch 74 right above it, and is tied off with a knot. The upper connecting suture 60 is connected to a left-hand one of the two outer walls 70, as looking radially inward at the first leg 56a. The lower connecting suture 62 has a first free end 88 tied to the outwardly-angled flange 78 in the second holder leg 56b, as best seen in FIG. 5B (and also FIG. 15A). In particular, the first free end 88 loops through a right-hand one of the through holes 80 in the flange 78 and is tied off with a knot. As will be explained below, both of the connecting sutures 60, 62 are respectively threaded down through the heart valve 20 and around various features on the holder 50, and ultimately a second free end is tied at the same location as the first free and. In this regard each of the connecting sutures 60, 62 is secured at both its free ends to the holder 50 and has a middle portion in between.



FIGS. 6-11 illustrate a number of steps that an assembler takes to couple the valve holder 50 to the heart valve 20 using the upper connecting suture 60. Initially, FIG. 6 shows the valve holder 50 exploded above the heart valve 20 with the first leg 56a facing out from the page. In each of the succeeding drawings (e.g., FIGS. 7A-11B), the holder 50 abuts the valve 20 and the suture 60 is shown progressively securing them together. It should be noted that the assembly rotates in the elevational “A” series of views for clarity, while it remains stationary as looking from above in the “B” series of views.


As explained above, the suture 60 is first tied off at a left hand one of the vertical outer walls 70 on the first leg 56a. From there, as seen in FIGS. 7A and 7B, the assembler passes the suture 60 to the inside of the first leg 56a, crossing over from the left side to the right side, and then emerging to the outside of the leg and extending downward through one of the through holes 80 in the outwardly-angled flange 78. The suture 60 continues downward and is threaded through a fabric portion of the heart valve 20. More particularly, the valve member 22 has fabric edge 90 that defines a portion of the fabric-covered support frame. The assembler threads the suture 60 through this fabric edge 90 at the cusps 34 of the valve member 22. Each leg 56 contacts and is secured to a mid-portion of each of the cusps 34 of the valve member 22. As will be explained, each suture 60 passes downward through the first through hole 80 in the flange 78, through the fabric edge 90, and back up through the second through hole 80, as seen in FIG. 7A.



FIGS. 7A and 7B illustrate the next step of threading the upper connecting suture 60 around the valve holder 50. After passing down and back up through the holes 80 in the flange 78 of the first leg 56a, and through the fabric edge 90, the assembler wraps the suture 60 around the left side of the first leg and around the inside thereof, crossing over the first length of the suture to exit on the right side of the leg, as shown. From there, the assembler passes the suture 60 in a counterclockwise manner (looking from above) around the cylindrical hub 52 and through an upwardly-opening notch 92 provided in a first rail 94a that extends outward from the hub between the first and second legs 56a, 56b.


Now with reference to FIGS. 8A and 8B, the suture 60 angles downward from the notch 92 and passes underneath the upper bridge portion 66 of the second holder leg 56b. The suture 60 wraps around the inside of the second leg 56b, and emerges to the front thereof. The suture 60 is then is then passed downward through the right-hand hole 80 of the flange 78, through the fabric edge 90 of the valve 20, and back up through the left-hand hole. At this point, the upper connecting suture 60 has secured both the first and second legs 56a, 56b to the valve 20, and is shown dangling loose; however, in practice the assembler typically maintains some tension on the suture.


In the next step, as seen in FIGS. 9A and 9B, the assembler brings the upper connecting suture 60 around the inside of the second leg 56b, crossing over the strand of the suture that previously passed to the inside of the leg. He or she then loops the suture 60 counterclockwise once over the upper bridge portion 66, making sure that the suture passes through both of the notches 74 in the outer walls 70. In this way, the suture crosses over the cutting well 72 defined between the outer walls 70 in the second leg 56b. The connecting suture 60 is looped underneath the bridge portion 66 and again continues in a counterclockwise fashion around the hub 52 and is positioned in the notch 92 of a second rail 94b between the second and third legs 56b, 56c.


Next, as seen in FIGS. 10A and 10B, the assembler wraps the suture 60 behind or to the inside of the third leg 56c, and around the outside of the leg and passes it downward through the right-hand hole 80 in the flange 78. As before, the suture 60 passes downward through the fabric edge 90 of the valve 20 and upward through the left-hand hole 80, thus securing the third leg 94c to the valve 20. As with the other two legs, the assembler then wraps the suture 60 around the left side and to the inside of the third leg 56c, and angles it in a counterclockwise direction over the notch 92 of a third rail 94c between the third and first legs 56c, 56a.



FIGS. 11A and 11B show the upper connecting suture 60 as it extends from the third rail 94c to the first leg 56a and its second free end 96 is tied off at a knot (also seen in FIG. 15C). The knot is tied off at the small aperture 76 on one of the outer walls 70 of the first leg 56a, along with the first free end 86 of the connecting suture 60, as was shown in FIGS. 5A and 5B. In the final assembly, there is a single connecting suture 60 wrapped around the holder 50 and securing the three legs 56 at the three cusps 34 of the valve 20. Further, a single-cut release point is provided where the suture 60 wraps around the bridge portion 66 and over the cutting well 72 on the second leg 56b. Since the two free ends 86, 96 of the suture 60 tie off on the holder, severing the middle portion at the cutting well 72 permits the holder 50 to be pulled free of the valve 20, with the suture 60 relatively easily sliding through out of the fabric edges 90.


Once the upper connecting suture 60 secures the holder 50 to the heart valve 20, the lower connecting suture 62 is attached and the anchoring stent 24 constricted, as will be explained with reference to FIGS. 12-13. However, it should be noted that the configuration shown in FIGS. 11A and 11B wherein a single connecting suture 60 attaches the holder 50 to the valve 20 at three cusp locations and features a single-cut release can be used for valves other than the exemplary embodiment. That is, the valve 20 may include an anchoring stent that is plastically expandable as opposed to being self-expandable. For instance, the valves shown in U.S. Pat. No. 8,641,757 to Pintor, et al. have balloon expandable anchoring stents, and the holder 50 and upper connecting suture 60 configuration disclosed herein could be used to manipulate those valves. In that case, a lower connecting suture could be omitted, as its purpose is to constrict a self-expandable anchor stent. It should also be noted that the valve may not have an anchor stent at all, and the holder 50 and upper connecting suture 60 configuration disclosed herein could be used to manipulate “standard” as opposed to “hybrid” prosthetic heart valves.


With reference to FIGS. 12A and 12B an initial path of the lower connecting suture 62 is shown. The reader will recall that the first free end 88 is tied to the outwardly-angled flange 78 in the second holder leg 56b, as seen in FIG. 5B. The assembler uses a needle 100 to thread the suture 62 downward through the peripheral sealing ring 36 of the heart valve 20, which is just outside the fabric edge 90 that defines a portion of the fabric-covered support frame. The suture 62 continues to the outside of the valve 20 and threads through a portion of the fabric at a lower end of the anchoring stent 24. In the illustrated embodiment, the needle 100 and suture 62 pass through the fabric layer 26 immediately covering the anchoring stent 24 (inner fabric layer), although it may also be that the sealing flange 28 extends or covers the lower end of the stent. In any event, the path of the suture 62 is substantially straight down from the sealing ring 36 to the lower edge of the fabric-covered stent 24.



FIGS. 12C and 12D illustrate the lower connecting suture 62 being sewn around the lower end of the anchoring stent 24 (through the fabric covering). The assembler uses the needle 100 to thread the suture 62 in and out of the stent 24 in a serpentine fashion, around the periphery thereof, it comes full circle adjacent to the starting point below the second leg 56b. Prior to this threading step, the stent 24 has been constricted by an external force, such as with a separate cinch or fixture (not shown) that encircles the lower end of the stent and forces it inward. The suture 62 emerges to the outside of the stent 24 and passes directly upward to the left-hand hole 80 of the flange 78 in the second leg 56b, again passing through the sealing ring 36. At this stage the anchoring stent 24 remains in an expanded configuration, flared slightly outwardly.


Now with reference to FIGS. 12E and 12F, the lower connecting suture 62 circles behind or to the inside of the second leg 56b, and then wraps around the upper bridge portion 66 thereof, through both of the notches 74 in the outer walls 70. In this way, both the upper and lower connecting sutures 60, 62 traverse the cutting well 72 on the same leg 56b. FIG. 12F illustrates the free end of the connecting suture 62 again being passed behind or to the inside of the second leg 56a.


Finally, with reference to FIGS. 13A and 13B, a second free end 102 thereof is again secured to the right-hand hole 80 in the outwardly-angled flange 78 in the second leg 56b. Both the first and second free ends 88, 102 are thus secured to the holder at the same location. Some tension will be applied to the lower connecting suture 62 before securing it in this manner so that it can maintain the stent 24 in its constricted state without allowing any recoil. The external fixture (not shown) used to constrict the stent 24 can then be removed.



FIGS. 14A and 14B are top and bottom plan views, respectively, of the valve holder 50 secured to the heart valve 20 using the connecting sutures 60, 62. The release of the holder 50 from the valve 20 and conversion of the anchoring stent 24 from its contracted to its expanded states are enabled by severing the sutures 60, 62 at the cutting well 72 in the second leg 56b, in a single-point release configuration. The in-and-out or serpentine weave of the lower connecting suture 62 through the stent 24 is seen in FIG. 14B.



FIGS. 15A-15C are several partial sectional elevational views of the three valve holder 50 legs further illustrating the connecting sutures attached thereto. The second leg 56b is seen from one side in FIG. 15A to show the knot at which the first and second free ends 88, 102 of the lower connecting suture 62 attach. The downward path of the lower connecting suture 62 through the sealing ring 36 and to the lower end of the stent 24 is also seen. FIG. 15A also shows the two sutures 60, 62 wrapping around the upper bridge portion 66 and through both of the notches 74 in the outer walls 70 of the second leg 56b. As mentioned, both the upper and lower connecting sutures 60, 62 therefore traverse the cutting well 72 on the second leg 56b. FIG. 15B shows the third leg 56c from its left side, illustrating the upper connecting suture 60 passing downward around the leg and through the holes 80 in the flange 78 so as to be secured to the fabric edge 90 at the valve cusps 34. Finally, FIG. 15C shows the first and second free ends 86, 96 of the upper connecting suture 60 tied off at the small aperture 76 on one of the outer walls 70 of the first leg 56a. Again, the suture 60 wraps around the leg and passes down through the flange 78 to secure at the fabric edge 90 of the valve 20.



FIGS. 16A and 16B are perspective views at two different angles of the valve holder 50 and heart valve 20 assembly shown in phantom so as to better illustrate the pathway of the connecting sutures 60, 62. These views more clearly illustrate how the upper connecting suture 60 encircles the holder 50, while the lower connecting suture 62 encircles the lower end of the stent 24, and both converge at the single cutting well 72 for a one-cut release of both the holder and stent.



FIG. 17A illustrates a scalpel 110 descending into the cutting well 72 on the second leg 56b of the valve holder 50. This action severs the two connecting sutures 60, 62, thus disengaging the holder 50 from the valve 20 and allowing the anchoring stent 24 to expand. FIG. 17B shows the conversion of the anchoring stent 24 from its constricted to its expanded state and separation of the valve holder 50 from the heart valve 20. This operation will occur after the valve 20 has been seated at the target annulus. If this is the aortic annulus, conversion of the stent 24 causes it to expand outward into contact with the subvalvular structure just below the annulus. The sealing ring 36 and to an extent the sealing flange 28 contact the upper side of the aortic annulus, and thus the valve 20 is held in place. Additional sutures or clips may also be used.



FIG. 18A is an elevational view of the valve holder 50 secured to an alternative hybrid prosthetic heart valve 120 using connecting sutures 122, 124. The heart valve 120 is substantially the same as described above, though a sealing ring 126 has a substantially planar upper face 128 and an undulating lower face 130 that matches the aortic annulus. Also, an anchoring stent 132 (shown without fabric covering for clarity) is modified from that shown above at 24 in FIGS. 1-2. Namely, rather than a series of axial struts with a chevron-shaped pattern of circumferential struts therebetween, as before, the stent 132 has a series of crossed struts that define a regular array of diamond-shaped cells therebetween.


As described above, an upper connecting suture 122 secures three legs 134 of the holder 50 to cusps of the valve 120. A lower connecting suture 124 attaches to the holder (not shown) passes downward to a lower end of the stent 132, and encircles and constricts the lower end when under tension. Both connecting sutures 122, 124 preferably pass over a single cutting well on the holder to enable simultaneous severing thereof and detachment of the holder and expansion of the stent 132, as seen in FIG. 18B.


While the certain embodiments are described and illustrated herein, it is to be understood that the words and drawings that have been used are words of description and not of limitation. Therefore, changes may be made within the appended claims without departing from the true scope of the disclosure.

Claims
  • 1. A system for delivering a prosthetic heart valve to a native valve annulus, comprising: a prosthetic heart valve including a fabric-covered non-expandable, non-collapsible annular support structure defining a flow orifice and an inflow end defining an inflow direction with an outflow direction opposite thereto, the prosthetic heart valve having valve leaflets attached to the support structure and mounted to alternately open and close across the flow orifice;a valve holder having a central hub with a structure adapted to mate with a delivery handle; anda connecting suture tied at two free ends to the valve holder and attaching the valve holder to the prosthetic heart valve at multiple locations, wherein the valve holder attaches to an outflow side of the prosthetic heart valve, the connecting suture being routed over a single cutting well on the valve holder such that severing the connecting suture at the single cutting well detaches the valve holder from the prosthetic heart valve, whereinthe valve holder has three legs that contact the fabric-covered support structure at three locations, and wherein the connecting suture passes circumferentially around the valve holder and threads through the fabric at the three locations, and whereinthe support structure has three commissure posts projecting in the outflow direction and three cusps therebetween that arc in the inflow direction, and each of the three legs angles outward and in the inflow direction from the central hub to one of the three cusps, and wherein the connecting suture is tied at the two free ends to the holder and in between passes circumferentially around the central hub of the holder and descends down each of the three legs to pass through the fabric at each of the three cusps.
  • 2. The system of claim 1, wherein the connecting suture passes through two holes at a terminal foot of each leg and threads through the fabric at each of the three cusps between the two holes, and wherein the connecting suture circles completely around each leg between the hub and the respective terminal foot.
  • 3. The system of claim 1, wherein the connecting suture is tied at the two free ends to one of the three legs of the holder.
  • 4. The system of claim 1, wherein the prosthetic heart valve further includes a self-expandable anchoring stent with a first end extending around the flow orifice and mounted to the prosthetic heart valve at the inflow end of the support structure, the anchoring stent having a second end projecting in the inflow direction away from the support structure, the second end transitioning between a contracted state for delivery to the native valve annulus and an expanded state.
  • 5. The system of claim 4, wherein the connecting suture attaching the valve holder to the prosthetic heart valve at multiple locations is an upper connecting suture, and further including a lower connecting suture tied at two free ends to the valve holder and extending around the second end of the anchoring stent in tension and constricting the second end to the contracted state.
  • 6. The system of claim 5, wherein the upper and lower connecting sutures pass over the single cutting well on the valve holder such that severing the upper and lower connecting sutures both releases tension in the lower connecting suture to permit the second end to expand toward the expanded state and detaches the valve holder from the prosthetic heart valve.
  • 7. The system of claim 5, wherein the anchoring stent has a fabric covering, and wherein the lower connecting suture passes through the fabric covering around the anchoring stent.
  • 8. The system of claim 5, wherein the lower connecting suture is tied at the two free ends to a terminal foot of one of the three lees of the holder.
  • 9. A method for delivering a prosthetic heart valve to a native valve annulus, comprising: providing a prosthetic heart valve including a fabric-covered non-expandable, non-collapsible annular support structure defining a flow orifice and an inflow end defining an inflow direction with an outflow direction opposite thereto, and valve leaflets mounted to the support structure to alternately open and close across the flow orifice, the prosthetic heart valve being attached to a valve holder at multiple locations with a connecting suture tied at two free ends to the valve holder and routed over a single cutting well on the valve holder, wherein the valve holder attaches to an outflow side of the prosthetic heart valve, whereinthe valve holder has three legs that contact the fabric-covered support structure at three locations, and wherein the connecting suture passes circumferentially around the valve holder and threads through the fabric at the three locations, wherein severing the connecting suture at the single cutting well enables the connecting suture to be pulled free from the fabric-covered support structure, and whereinthe support structure has three commissure posts projecting in the outflow direction and three cusps therebetween that arc in the inflow direction, and each of the three legs angles outward and in the inflow direction from the central hub to one of the three cusps, and wherein the connecting suture is tied at the two free ends to the holder and in between passes circumferentially around the central hub of the holder and descends down each of the three legs to pass through the fabric at each of the three cups;attaching the valve holder to a delivery handle;advancing the valve holder and attached prosthetic heart valve using the delivery handle to a native valve annulus until the inflow end of the prosthetic heart valve contacts the native valve annulus;anchoring the prosthetic heart valve to the native valve annulus; andsevering the connecting suture at the single cutting well to detach the valve holder from the prosthetic heart valve.
  • 10. The method of claim 9, wherein the connecting suture passes through two holes at a terminal foot of each leg and threads through the fabric at each of the three cusps between the two holes, and wherein the connecting suture circles completely around each leg between the hub and the respective terminal foot.
  • 11. The method of claim 9, wherein the connecting suture is tied at the two free ends to one of the three legs of the holder.
  • 12. The method of claim 9, wherein the prosthetic heart valve has a compressible sealing ring at the inflow end, wherein the method includes seating the sealing ring against the native valve annulus and anchoring the sealing ring to the native valve annulus.
  • 13. The method of claim 12, wherein the prosthetic heart valve further includes a self-expandable anchoring stent with a first end extending around the flow orifice and mounted to the prosthetic heart valve at the inflow end of the support structure, the anchoring stent having a second end projecting in the inflow direction away from the support structure having a contracted state for delivery to the native valve annulus, wherein the method includes advancing the anchoring stent through the native valve annulus with the second end in the contracted state, seating the sealing ring against the native valve annulus, and permitting the second end to expand toward an expanded state in contact with surrounding tissue.
  • 14. The method of claim 13, wherein the connecting suture attaching the valve holder to the prosthetic heart valve at multiple locations is an upper connecting suture, and further including a lower connecting suture tied at two free ends to the valve holder and extending around the second end of the anchoring stent in tension and constricting the second end to the contracted state, the method further including the step of severing the lower connecting suture after the inflow end of the prosthetic heart valve contacts the native valve annulus to release tension in the lower connecting suture and permit the second end to expand toward the expanded state.
  • 15. The method of claim 14, wherein the anchoring stent has a compressible sealing flange around the second end which contacts and seals against the native valve annulus.
  • 16. The method of claim 14, wherein the upper and lower connecting sutures pass over the single cutting well on the valve holder such that severing the upper and lower connecting sutures both releases tension in the lower connecting suture and detaches the valve holder from the prosthetic heart valve.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/429,651, filed Jun. 3, 2019, which is a continuation of U.S. patent application Ser. No. 15/451,203, filed Mar. 6, 2017, now U.S. Pat. No. 10,307,249, which is a continuation of U.S. patent application Ser. No. 14/700,007, filed Apr. 29, 2015, now U.S. Pat. No. 9,585,752, which claims the benefit of U.S. Patent Application No. 61/986,761, filed Apr. 30, 2014, the entire disclosures all of which are incorporated by reference for all purposes.

US Referenced Citations (334)
Number Name Date Kind
3143742 Cromie Aug 1964 A
3320972 High et al. May 1967 A
3371352 Siposs et al. Mar 1968 A
3409013 Berry Nov 1968 A
3546710 Shumakov et al. Dec 1970 A
3574865 Hamaker Apr 1971 A
3628535 Ostrowsky et al. Dec 1971 A
3657744 Ersek Apr 1972 A
3686740 Shiley Aug 1972 A
3755823 Hancock Sep 1973 A
3839741 Haller Oct 1974 A
4035849 Angell et al. Jul 1977 A
4078468 Civitello Mar 1978 A
4079468 Liotta et al. Mar 1978 A
4084268 Ionescu et al. Apr 1978 A
4106129 Carpentier et al. Aug 1978 A
4172295 Batten Oct 1979 A
4217665 Bex et al. Aug 1980 A
4218782 Rygg Aug 1980 A
4259753 Liotta et al. Apr 1981 A
4340091 Skelton et al. Jul 1982 A
4343048 Ross et al. Aug 1982 A
4364126 Rosen et al. Dec 1982 A
4388735 Ionescu et al. Jun 1983 A
4441216 Ionescu et al. Apr 1984 A
4451936 Carpentier et al. Jun 1984 A
4470157 Love Sep 1984 A
4490859 Black et al. Jan 1985 A
4501030 Lane Feb 1985 A
4506394 Bedard Mar 1985 A
4535483 Klawitter et al. Aug 1985 A
4605407 Black et al. Aug 1986 A
4626255 Reichart et al. Dec 1986 A
4629459 Ionescu et al. Dec 1986 A
4680031 Alonso Jul 1987 A
4687483 Fisher et al. Aug 1987 A
4702250 Ovil et al. Oct 1987 A
4705516 Barone et al. Nov 1987 A
4725274 Lane et al. Feb 1988 A
4731074 Rousseau et al. Mar 1988 A
4778461 Pietsch et al. Oct 1988 A
4790843 Carpentier et al. Dec 1988 A
4851000 Gupta Jul 1989 A
4865600 Carpentier et al. Sep 1989 A
4888009 Lederman et al. Dec 1989 A
4914097 Oda et al. Apr 1990 A
4960424 Grooters Oct 1990 A
4993428 Arms Feb 1991 A
5010892 Colvin et al. Apr 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5147391 Lane Sep 1992 A
5163955 Love et al. Nov 1992 A
5258023 Reger Nov 1993 A
5316016 Adams et al. May 1994 A
5326370 Love et al. Jul 1994 A
5326371 Love et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5350420 Cosgrove et al. Sep 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5376112 Duran Dec 1994 A
5396887 Imran Mar 1995 A
5397351 Pavcnik et al. Mar 1995 A
5411522 Trott May 1995 A
5423887 Love et al. Jun 1995 A
5425741 Lemp et al. Jun 1995 A
5431676 Dubrul et al. Jul 1995 A
5443502 Caudillo et al. Aug 1995 A
5449384 Johnson Sep 1995 A
5449385 Religa et al. Sep 1995 A
5469868 Reger Nov 1995 A
5476510 Eberhardt et al. Dec 1995 A
5488789 Religa et al. Feb 1996 A
5489297 Duran Feb 1996 A
5489298 Love et al. Feb 1996 A
5500016 Fisher Mar 1996 A
5533515 Coller et al. Jul 1996 A
5549665 Vesely et al. Aug 1996 A
5562729 Purdy et al. Oct 1996 A
5571215 Sterman et al. Nov 1996 A
5573007 Bobo, Sr. Nov 1996 A
5578076 Krueger et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5618307 Donlon et al. Apr 1997 A
5626607 Malecki et al. May 1997 A
5628789 Vanney et al. May 1997 A
5693090 Unsworth et al. Dec 1997 A
5695503 Krueger et al. Dec 1997 A
5713952 Vanney et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5728064 Burns et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5735894 Krueger et al. Apr 1998 A
5752522 Murphy May 1998 A
5755782 Love et al. May 1998 A
5766240 Johnson Jun 1998 A
5776187 Krueger et al. Jul 1998 A
5776188 Shepherd et al. Jul 1998 A
5800527 Jansen et al. Sep 1998 A
5814097 Sterman et al. Sep 1998 A
5814098 Hinnenkamp et al. Sep 1998 A
5824064 Taheri Oct 1998 A
5824068 Bugge Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5848969 Panescu et al. Dec 1998 A
5855563 Kaplan et al. Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5865801 Houser Feb 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5895420 Mirsch, II et al. Apr 1999 A
5902308 Murphy May 1999 A
5908450 Gross et al. Jun 1999 A
5919147 Jain Jul 1999 A
5921934 Teo Jul 1999 A
5921935 Hickey Jul 1999 A
5924984 Rao Jul 1999 A
5928281 Huynh et al. Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5972004 Williamson, IV et al. Oct 1999 A
5984959 Robertson et al. Nov 1999 A
5984973 Girard et al. Nov 1999 A
6010531 Donlon et al. Jan 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6059827 Fenton, Jr. May 2000 A
6066160 Colvin et al. May 2000 A
6074418 Buchanan et al. Jun 2000 A
6081737 Shah Jun 2000 A
6083179 Oredsson Jul 2000 A
6099475 Seward et al. Aug 2000 A
6106550 Magovern et al. Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6117091 Young et al. Sep 2000 A
6126007 Kari et al. Oct 2000 A
6264611 Ishikawa et al. Jul 2001 B1
6319280 Schoon Nov 2001 B1
6322526 Rosenman et al. Nov 2001 B1
6350282 Eberhardt Feb 2002 B1
6491624 Lotfi Dec 2002 B1
6773457 Ivancev et al. Aug 2004 B2
7018404 Holmberg et al. Mar 2006 B2
7037333 Myers et al. May 2006 B2
7189258 Johnson et al. Mar 2007 B2
7998151 St. Goar et al. Aug 2011 B2
8152844 Rao et al. Apr 2012 B2
8308798 Pintor et al. Nov 2012 B2
8323337 Gurskis et al. Dec 2012 B2
8348998 Pintor et al. Jan 2013 B2
20010021872 Bailey et al. Sep 2001 A1
20010039435 Roue et al. Nov 2001 A1
20010039436 Frazier et al. Nov 2001 A1
20010041914 Frazier et al. Nov 2001 A1
20010041915 Roue et al. Nov 2001 A1
20010049492 Frazier et al. Dec 2001 A1
20020026238 Lane et al. Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020058995 Stevens May 2002 A1
20020123802 Snyders Sep 2002 A1
20020133226 Marquez Sep 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020188348 DiMatteo et al. Dec 2002 A1
20020198594 Schreck Dec 2002 A1
20030014104 Cribier Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030036795 Andersen et al. Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030109924 Cribier Jun 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030167089 Lane Sep 2003 A1
20030236568 Hojeibane et al. Dec 2003 A1
20040019374 Hojeibane et al. Jan 2004 A1
20040034411 Quijano et al. Feb 2004 A1
20040044406 Woolfson et al. Mar 2004 A1
20040106976 Bailey et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040122516 Fogarty et al. Jun 2004 A1
20040167573 Williamson et al. Aug 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040206363 McCarthy et al. Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210305 Shu et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040225355 Stevens Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050027348 Case et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050043760 Fogarty et al. Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050060029 Le et al. Mar 2005 A1
20050065594 DiMatteo et al. Mar 2005 A1
20050065614 Stinson Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075713 Biancucci et al. Apr 2005 A1
20050075717 Nguyen et al. Apr 2005 A1
20050075718 Nguyen et al. Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075724 Svanidze et al. Apr 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050096738 Cali et al. May 2005 A1
20050137682 Justino Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137694 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050159811 Lane Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050165479 Drews et al. Jul 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050182486 Gabbay Aug 2005 A1
20050192665 Spenser et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222674 Paine Oct 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240259 Sisken et al. Oct 2005 A1
20050251252 Stobie Nov 2005 A1
20050261765 Liddicoat Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20060025857 Bergheim et al. Feb 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060085060 Campbell Apr 2006 A1
20060095125 Chinn et al. May 2006 A1
20060122634 Ino et al. Jun 2006 A1
20060122692 Gilad et al. Jun 2006 A1
20060136054 Berg et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060154230 Cunanan et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060195184 Lane et al. Aug 2006 A1
20060195185 Lane et al. Aug 2006 A1
20060195186 Drews et al. Aug 2006 A1
20060207031 Cunanan et al. Sep 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060235508 Lane et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060246888 Bender et al. Nov 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060271172 Tehrani Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20060293745 Carpentier et al. Dec 2006 A1
20070005129 Damm et al. Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016285 Lane et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070078509 Lotfy Apr 2007 A1
20070078510 Ryan Apr 2007 A1
20070100440 Figulla et al. May 2007 A1
20070129794 Realyvasquez Jun 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070150053 Gurskis et al. Jun 2007 A1
20070156233 Kapadia et al. Jul 2007 A1
20070162103 Case et al. Jul 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070179604 Lane Aug 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070198097 Zegdi Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070225801 Drews et al. Sep 2007 A1
20070233237 Krivoruchko Oct 2007 A1
20070239266 Birdsall Oct 2007 A1
20070239269 Dolan et al. Oct 2007 A1
20070239273 Allen Oct 2007 A1
20070244546 Francis Oct 2007 A1
20070244558 Machiraju Oct 2007 A1
20070255398 Yang et al. Nov 2007 A1
20070260305 Drews et al. Nov 2007 A1
20070265701 Gurskis et al. Nov 2007 A1
20070270944 Bergheim et al. Nov 2007 A1
20070282436 Pinchuk Dec 2007 A1
20070288089 Gurskis et al. Dec 2007 A1
20080021546 Patz et al. Jan 2008 A1
20080033543 Gurskis et al. Feb 2008 A1
20080065198 Quintessenza Mar 2008 A1
20080119875 Ino et al. May 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080319543 Lane Dec 2008 A1
20090036903 Ino et al. Feb 2009 A1
20090192599 Lane et al. Jul 2009 A1
20090192602 Kuehn Jul 2009 A1
20090192603 Kuehn Jul 2009 A1
20090192604 Gloss Jul 2009 A1
20090192605 Gloss et al. Jul 2009 A1
20090192606 Gloss et al. Jul 2009 A1
20100161036 Pintor et al. Jun 2010 A1
20100249894 Oba et al. Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100331972 Pintor et al. Dec 2010 A1
20110022165 Oba et al. Jan 2011 A1
20110147251 Hodshon et al. Jun 2011 A1
20120065729 Pintor et al. Mar 2012 A1
20120078357 Conklin Mar 2012 A1
20120150288 Hodshon et al. Jun 2012 A1
20120323317 Karapetian et al. Dec 2012 A1
20130053949 Pintor et al. Feb 2013 A1
20130116777 Pintor et al. May 2013 A1
Foreign Referenced Citations (6)
Number Date Country
0125393 Nov 1984 EP
0143246 Jun 1985 EP
1116573 Jul 1985 SU
1697790 Dec 1991 SU
9213502 Aug 1992 WO
9742871 Nov 1997 WO
Non-Patent Literature Citations (3)
Entry
International Search Report from corresponding PCT case No. PCT/US2015/028523 dated Aug. 3, 2015.
Krakow, “3F Therapeutics, Inc. Announces the First Clinical Implantation of the 3F Enable Aortic Heart Valve.TM., a Patented, Sutureless Implantation, Replacement Heart Valve Intended to Save Valuable Surgery Time and Reduce Time RelatedComplications . . . ” Healthcare Sales & Marketing Network News Feed, Jan. 18, 2005, pp. 1-2.
Sadowski, Jerzy; Kapelak, Boguslaw; Bartus, Krzysztof, “Sutureless Heart Valve Implantation—A Case Study,” Touch Briefings, 2005, pp. 48-50.
Related Publications (1)
Number Date Country
20220362014 A1 Nov 2022 US
Provisional Applications (1)
Number Date Country
61986761 Apr 2014 US
Continuations (3)
Number Date Country
Parent 16429651 Jun 2019 US
Child 17810182 US
Parent 15451203 Mar 2017 US
Child 16429651 US
Parent 14700007 Apr 2015 US
Child 15451203 US